• 제목/요약/키워드: Concrete silo

검색결과 30건 처리시간 0.024초

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Leachability of lead, cadmium, and antimony in cement solidified waste in a silo-type radioactive waste disposal facility environment

  • Yulim Lee;Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2889-2896
    • /
    • 2023
  • The waste acceptance criteria for heavy metals in mixed waste should be developed by reflecting the leaching behaviors that could highly depend on the repository design and environment surrounding the waste. The current standards widely used to evaluate the leaching characteristics of heavy metals would not be appropriate for the silo-type repository since they are developed for landfills, which are more common than a silo-type repository. This research aimed to explore the leaching behaviors of cementitious waste with Pb, Cd, and Sb metallic and oxide powders in an environment simulating a silo-type radioactive waste repository. The Toxicity Characteristic Leaching Procedure (TCLP) and the ANS 16.1 standard were employed with standard and two modified solutions: concrete-saturated deionized and underground water. The compositions and elemental distribution of leachates and specimens were analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES) and energy-dispersive X-ray spectroscopy combined with scanning electron microscopy (SEM-EDS). Lead and antimony demonstrated high leaching levels in the modified leaching solutions, while cadmium exhibited minimal leaching behavior and remained mainly within the cement matrix. The results emphasize the significance of understanding heavy metals' leaching behavior in the repository's geochemical environment, which could accelerate or mitigate the reaction.

地盤과 構造物사이의 相互作用을 考慮한 農業用 사이로의 解析에 관한 硏究(Ⅰ) - 第 1 報 模型 및 프로그램의 開發 - (An analysis of the farm silo supported by ground)

  • 조진구;조현영
    • 한국농공학회지
    • /
    • 제27권2호
    • /
    • pp.38-46
    • /
    • 1985
  • The reinforced concrete farm silos on the elastic foundatin are widely used in agricultural engineering because of their superior structural performance, economy and attractive appearance. Various methods for the analysis and design of farm silo, such as the analytical method, the finite difference method, and the finite element methods, can be used. But the analytical procedure can not be applied for the intricate conditions in practice. Therefore lately the finite element method has been become in the structural mechanics. In this paper, a method of finite element analysis for the cylindrical farm silo on ffness matrix for the elastic foundation governed by winkler's assumption. A complete computer programs have been developed in this paper can be applicable not only to the shell structures on elastic foundation but also to the arbitrary three dimensional structures. Assuming the small deflection theory, the membrane and plate bending behaviours of flat plate element can be assumed mutually uncoupled. In this case, the element has 5 degrees of freedom per node when defined in the local coordinate system. However, when the element properties are transformed to the global coordinates for assembly, the 6th degree of freedom should be considered. A problem arises in this procedure the resultant stiffness in the 6th degree of freedom at this node will be zero. But this singularity of the stiffness matrix can be eliminated easily by merely replacing the zero diagonal by dummy stiffness.

  • PDF

Structural stability analysis of waste packages containing low- and intermediate-level radioactive waste in a silo-type repository

  • Byeon, Hyeongjin;Jeong, Gwan Yoon;Park, Jaeyeong
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1524-1533
    • /
    • 2021
  • The structural stability of a waste package is essential for containing radioactive waste for the long term in a repository. A silo-type disposal facility would require more severe verification for the structural integrity, because of radioactive waste packages staked with several tens of meters and overburdens of crushed rocks and shotcretes. In this study, structural safety was analyzed for a silo-type repository, located approximately 100 m below sea level in Gyeongju, Korea. Finite element simulation was performed to investigate the influence of the loads from the backfilling materials and waste package stacks on the mechanical stress of the disposed of wastes and containers. It was identified that the current design of the waste package and the compressive strength criterion for the solidified waste would not be enough to maintain structural stability. Therefore, an enhanced criterion for the compressive strength of the solidified waste and several reinforced structural designs for the disposal concrete container were proposed to prevent failure of the waste package based on the results of parametric studies.

The role of slenderness on the seismic behavior of ground-supported cylindrical silos

  • Demir, Aysegul Durmus;Livaoglu, Ramazan
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.65-74
    • /
    • 2019
  • This paper reports on the results of a parametric study, which examines the effects of varying aspect ratios on the dynamic response of cylindrical silos directly supported on the ground under earthquake loading. Previous research has shown that numerical models can provide considerably realistic simulations when it comes to the behavior of silos by using correct boundary conditions, appropriate element types and material models. To this end, a three dimensional numerical model, taking into account the bulk material-silo wall interaction, was produced by the ANSYS commercial program, which is in turn based on the finite element method. The results obtained from the numerical analysis are discussed comparatively in terms of dynamic material pressure, horizontal displacement, equivalent base shear force and equivalent bending moment responses for considered aspect ratios. The effects experienced because of the slenderness of the silo in regards to the seismic response were evaluated along with the effectiveness of the classification system proposed by Eurocode in evaluating the loads on the vertical walls. Results clearly show that slenderness directly affects the seismic response of such structures especially in terms of behavior and the magnitude of the responses. Furthermore the aspect ratio value of 2.0, given as a behavioral changing limit in the technical literature, can be used as a valid limit for seismic behavior.

월성 중저준위 처분시설 다중사일로 안정성 평가 모델 - 1단계: 모델개발 (Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea - PHASE I: Model Development)

  • 임두현;김지연;박주완
    • 방사성폐기물학회지
    • /
    • 제9권2호
    • /
    • pp.99-105
    • /
    • 2011
  • 중저준위 방사성폐기물 처분장의 안전성 평가를 위하여 지하 사일로와 그 주변의 굴착손상영 역 (EDZ) 및 단열암반을 고려한 지하수유동해석과 핵종이동해석의 통합모델을 개발하였다. 사일로를 다중방벽개념으로 고려하여 사일로를 구성하는 3개의 특성지역 (waste, buffer, concrete)으로 구분하여 해석하였고, EDZ는 사일로 주변과 건설운영 터널 주변의 손상영역을 고려하였다. 단열암반의 불균일성은 분리단열 (discrete fractures)로 부터 해석된 불균일한 지하수 유속계로 도출하였고, 그 결과를 핵종의 이동경로를 모사하는데 사용하였다. 현 모델은 핵종누출에 따른 사일로 배치의 최적화와 안전성의 정량화를 도출하는데 사용가능하다.

유한요소법에 의한 PC 농업용 사이로의 해석에 관한 연구 -제2보 탄성지반에 놓인 경우- (-An Analysis of Pre-Stressed Concrete Farn Sild by the Finite Element Method-)

  • 조진구;조현영;박병기
    • 한국농공학회지
    • /
    • 제24권3호
    • /
    • pp.73-83
    • /
    • 1982
  • study aims to derive a rational method for the analysis of the farm silo supported on an elastic foundation in which it is assumed that the reaction pressure of the soil at a point is proportional to the deflection at that point. In order to investigate the effects of an elastic foundation on the behaviour of the structures on it, the analysis of the farm silo resting on an elastic foundation was compared with the solution that the ground support may be assumed uniform (which was obtained from part I of this paper). To calculate the deformation of an elastic foundation, Boussinesq's solution which allows an interaction of the various parts of ground was adopted. In this case, the foundation was treated as a superparametric element additionally. In the evaluation of an element stiffness matrix, Gauss quadrature' was used. In above numerical integration, 3-point rule for the farm silo wall and the footing was introduced and 2-point rule for the evaluation of a reaction between the footing and the elastic foundation was adopted. The stresses of a farm silo on an elastic foundation were smaller than those which the distribution of contact pressure between the footing and the soil is assumed uniformly. Since the differences of stresses were remarkable in PS structures than RC structures, it is desirable that designers take into account the effect of an elastic foundation for the case of PS structures. It can be noted that while the effect of an elastic foundation was more conspicuously observed in near of the ground, the value of stresses at far from the soil was little affected by an supported soil.

  • PDF

중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동 (Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea)

  • 하재철;이정환;정해룡;김주엽;김주열
    • 방사성폐기물학회지
    • /
    • 제12권4호
    • /
    • pp.267-274
    • /
    • 2014
  • 본 연구에서는 중 저준위방사성폐기물 처분시설(이하 처분시설)에서 발생하는 기체의 이동현상을 예측하기 위한 2차원 수치 모델링을 수행하였다. 또한, 기체 이동 모델링에서 주요 입력변수로 적용되는 사일로 콘크리트의 기체침투압(gas entry pressure)와 기체 투과도(gas permeability)를 실측하여, 모델링 입력변수로 적용하였다. 사일로 콘크리트의 기체침투압(gas entry pressure)와 기체 투과도(gas permeability)는 각각 $0.97{\pm}0.15bar$$2.44{\times}10^{-17}m^2$로 측정되었다. 기체 이동 모델링 결과, 사일로 내부에서 발생하는 수소 기체는 기상으로 이동하지 않고 지하수에 용해되어 지하수와 함께 생태계로 이동하는 것을 알 수 있다. 또한, 폐쇄 후 약 1,000 년 후 부터 사일로 상부부터 수소기체 밀도가 증가하기 시작하는 것으로 예측되었다. 따라서, 사일로 내부에서 발생된 기체는 기상으로 사일로 내부에 축적되지 않으며, 이로 인해 사일로 콘크리트의 내구성에 영향을 미치지 않을 것으로 판단된다.

포화유무 및 온도조건에 따른 콘크리트 음향방출 신호 감쇠계수 결정 (Determination of acoustic emission signal attenuation coefficient of concrete according to dry, saturation, and temperature condition)

  • 이항로;홍창호;김진섭;김지원
    • 한국터널지하공간학회 논문집
    • /
    • 제24권1호
    • /
    • pp.39-55
    • /
    • 2022
  • 본 연구는 경주 중·저준위 지하 처분환경에서의 사일로 콘크리트의 음향방출(AE) 신호 감쇠계수(α)를 결정하기 위해 신호감쇠 실험을 수행하였다. 활용된 시료들은 경주 중·저준위 처분장 사일로에 사용된 콘크리트 배합비로 제작하였으며 28일간 수중 양생 후 처분환경에 맞도록 온도 및 포화유무에 따라 추가적으로 노출시켰다. 처분조건 별 각 3개씩의 공시체에 대하여 신호전달거리에 따른 AE 신호를 측정한 결과, 초기구간에서는 포화콘크리트의 AE 진폭과 절대에너지가 건조콘크리트의 경우보다 더 높게 나타났지만, α는 포화콘크리트의 경우가 더 높게 산정되었다. 또한, 포화유무와 상관없이 온도가 증가함에 따라 α는 감소하는 경향을 보였다. α는 온도조건보다는 포화유무에 따른 영향이 큰 것으로 분석되었으며, 이는 콘크리트 처분구조물의 감쇠신호 측정 시 포화여부를 고려한 판단이 중요하다는 것을 의미한다. 처분환경에서의 콘크리트 α는 균열이 발생한 위치에서의 실제 AE 특성 파라미터 값을 추정함으로써 경주 중·저준위 처분환경에서 사일로 콘크리트의 건전성을 예측하고 센서의 최적 배치를 결정하는 데 도움이 될 것으로 기대한다.