• 제목/요약/키워드: Concrete properties

검색결과 5,736건 처리시간 0.026초

Resistance of concrete made of fibers in weight lifting slabs against impact in sports training

  • Zhi Li
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.325-336
    • /
    • 2023
  • A significant component of many civil constructions such as buildings, reservoirs, bridges, and sports halls, concrete has become increasingly popular due to its versatile properties. Concrete's internal characteristics change due to the use of different types of fibers, including changes in its microstructure, volume, and hole dimensions. Additionally, the type, dimensions, and distribution of fibers in concrete can affect the results of flexural strength tests by affecting its compressive and tensile strength. Due to a lack of information, fiber concrete is a new composite material in the production industry that requires laboratory studies to determine its behavior. This study investigated the bending behavior of multilayer slabs made of concrete reinforced by polyamide-propylene fibers against impact in weight lifting exercises. Results showed that adding fibers to concrete slab samples improved the mechanical properties while replacing them hurt the mechanical properties and failure of polymer fiber-reinforced concrete. On the other hand, adding and replacing fibers increases durability and has a positive effect.

Effect of fiber type and content on properties of high-strength fiber reinforced self-consolidating concrete

  • Tuan, Bui Le Anh;Tesfamariam, Mewael Gebregirogis;Hwang, Chao-Lung;Chen, Chun-Tsun;Chen, Yuan-Yuan;Lin, Kae-Long
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.299-313
    • /
    • 2014
  • Effects of polypropylene (PP) fibers, steel fibers (SF) and hybrid on the properties of highstrength fiber reinforced self-consolidating concrete (HSFR-SCC) under different volume contents are investigated in this study. Comprehensive laboratory tests were conducted in order to evaluate both fresh and hardened properties of HSFR-SCC. Test results indicated that the fiber types and fiber contents greatly influenced concrete workability but it is possible to achieve self consolidating properties while adding the fiber types in concrete mixtures. Compressive strength, dynamic modulus of elasticity, and rigidity of concrete were affected by the addition as well as volume fraction of PP fibers. However, the properties of concrete were improved by the incorporation of SF. Splitting tensile and flexural strengths of concrete became increasingly less influenced by the inclusion of PP fibers and increasingly more influenced by the addition of SF. Besides, the inclusion of PP fibers resulted in the better efficiency in the improvement of toughness than SF. Furthermore, the inclusion of fibers did not have significant effect on the durability of the concrete. Results of electrical resistivity, chloride ion penetration and ultrasonic pulse velocity tests confirmed that HSFR-SCC had enough endurance against deterioration, lower chloride ion penetrability and minimum reinforcement corrosion rate.

인공경량골재의 물리적 특성에 따른 구조용 경량콘크리트의 프레쉬 및 경화성상 (Fresh and Hardened Properties of Structural Lightweight Concrete according to the Physical Properties of Artificial Lightweight Aggregates)

  • 신재경;최진만;정용;김양배;윤상천;지남용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.377-380
    • /
    • 2008
  • 경량콘크리트는 자중을 경감할 수 있다는 특징을 활용하여 다양한 용도로 건축 및 토목 구조물에 적용할 수 있다. 그러나 경량콘크리트의 성능은 사용된 경량골재의 물리적 특성에 의해 크게 좌우되어진다. 따라서 본 연구에서는 일반적인 콘크리트의 물결합재비부터 고강도 영역의 낮은 물결합재비까지의 콘크리트 배합범위를 대상으로 하여 국내외에서 제조 생산되고 있는 대표적인 구조용 인공경량골재 3종류의 품질 특성에 따른 경량콘크리트의 프레쉬 및 경화성상의 검토를 하였다. 그 결과 보통콘크리트에 비해 경량골재를 사용한 콘크리트의 경우가 슬럼프 로스가 다소 큰 것을 알 수 있었으며 재령별 강도발현은 보통콘크리트에 비해 경량콘크리트가 다소 낮은 것을 알 수 있으나 큰 차이를 나타내지는 않았다. 경량골재의 비조립형 및 조립형 골재에 따라서는 조립형 경량골재를 사용한 경우 비조립형 보다 양호한 콘크리트 성상을 나타냈으며 향후 철근부착 및 철근정착 등의 구조 부재성능 차원의 검토를 통해 판단될 필요가 있다.

  • PDF

The Effects of Superplasticizers on the Engineering Properties of Plain Concrete

  • Park, Seung-Bum
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.29-43
    • /
    • 1999
  • The effects of superplasticizers on fresh and hardened concrete were investigated. The experimental program included tests on the workability and slump loss, bleeding, setting time, air content, compressive, tensile and flexural strength, permeability, shrinkage, freeze-thaw durability and creep deformation. Properties of superplasticized concrete were compared with those of conventional and base concretes. Superplasticizers were observed to have an appreciable fluidifying action in fresh concrete. They permitted a significant water reduction while maintaining the same workability. Bleeding of superplasticized concrete was much lower than that of conventional concrete of the same consistency. This indicates that the use of superplasticizers did not affect the tendency of segregation of fresh concrete. The compressive, tensile, and flexural strengths of superplasticized concrete were significantly higher than those of conventional concrete. The permeability and drying shrinkage and creep of superplasticized concrete were less than those of conventional concrete, but there were no significant differences between base and superplasticized concrete. Compared with base concrete, non-air-entrained superplasticized concrete had slightly higher freeze-thaw durability. and superplasticized concrete with an appropriate amount of entrained air Eave even better resistance to freezing and thawing.

  • PDF

규불화염계 혼화제를 사용한 콘크리트의 수밀성 및 경화특성에 관한 실험적 연구 (Experimental study on the watertightness and hardening properties of concrete using fluosilicate salt based chemical admixture)

  • 이정열;김재온;한승구;강용식;길배수;남재현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.36-39
    • /
    • 2004
  • In this study, effects of fluosilicate salt based chemical admixture(MZ) on the watertightness and hardening properties of concrete were investigated. Mix proportions for experiment were modulated at 0.55 of water to cement ratio and addition amount of MZ to $2.0\%$ at intervals $0.5\%$. Compressive strength, porosity and microstructure of hardened concrete cured at several days were executed to evaluate watertightness and hardening properties. It is ascertained that watertightness and hardening properties of concrete could be improved by an adequate addition of fluosilicate salt based chemical admixture.

  • PDF

부산근교에서 생산된 부순골재의 특성에 관한 기초적 연구 (A Fundamental Study on the Properties of Crushed Aggregates Produced in Busan Suburbs)

  • 배원만;염치선;이환우;장희석;김종수;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.376-379
    • /
    • 2004
  • The objective of in this study makes investigation into the characteristics of concrete as to properties and blended ratio of crushed aggregates through experimental researches. In this study, river sand is blended with crushed sand as to investigate the quality change and characteristics of concrete with variation of blend ratio of crushed sand(50, 60, 70, 80, 90, $100\%$). Measured the air contents and slump to investigate properties of fresh concrete, and unit weight and compressive strength in age of 7, 28days to investigate properties of hardened concrete. The experimental results of crushed aggregates' qualities were all satisfied with Korea Standard's values.

  • PDF

Effect of Dune Sand on the Properties of Flowing Sand-Concrete (FSC)

  • Bouziani, Tayeb;Bederina, Madani;Hadjoudja, Mourad
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.59-64
    • /
    • 2012
  • Sand-concrete is being researched for potential usage in construction in Saharan regions of Algeria, because of shortage in coarse aggregate resources. This research work deals with the effect of dune sand, available in huge quantities in these regions, on the properties of flowing sand-concrete (FSC) prepared with different proportions of dune and river sands. Mini-cone slump test, v-funnel flow-time test and viscosity measurements were used to characterize the behaviour of FSC in fresh state. The 28-day compressive strength was also determined. Test results show that an optimal content of dune sand, which makes satisfied fresh and hardened properties of FSC, is obtained. Moreover, the obtained flow index (constant b) calculated by the help of power-law viscosity model is successfully correlated to the experimental results of v-funnel flow time.

Engineering properties of steel fibre reinforced geopolymer concrete

  • Ganesan, N.;Indira, P.V.;Santhakumar, Anjana
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.305-318
    • /
    • 2013
  • Engineering properties such as compressive strength, splitting tensile strength, modulus of rupture, modulus of elasticity and Poisson's ratio of geopolymer concrete (GPC) and steel fibre reinforced geopolymer concrete (SFRGPC) have been obtained from standard tests and compared. A total of 15 specimens were tested for determining each property. The grade of concrete used was M 40. The percentages of steel fibres considered include 0.25%, 0.5%, 0.75% and 1%. In general, the addition of fibres improved the mechanical properties of both GPC and SFRGPC. However the increase was found to be nominal in the case of compressive strength (8.51%), significant in the case of splitting tensile strength (61.63%), modulus of rupture (24%), modulus of elasticity (64.92%) and Poisson's ratio (50%) at 1% volume fraction of fibres. An attempt was made to obtain the relation between the various engineering properties with the percentage of fibres added.

성토사면에 타설된 현장 콘크리트 말뚝의 강도특성에 미치는 성토재료 및 타설 방법에 대한 영향 (Effect of Strength Properties of In-Situ Concrete Pile in Embankment Slopes on Embankment Materials and Boring Methods)

  • 황무석;정재훈;박승기;이창수;박찬기
    • 한국농공학회논문집
    • /
    • 제50권5호
    • /
    • pp.73-81
    • /
    • 2008
  • This study evaluated the applicability of in-situ concrete pile as a stabilization materials of embankment slopes including agricultural reservoir and rural road etc. The experimental embankment slopes was constructed to investigate the strength properties of in-situ concrete pile with embankment materials and boring methods. The test variable were applied the boring method(driving and augering) and water-cement ratio. In order to analyze the physical and mechanical properties of embankment materials, permeability and water contents test were was performed. Also, the freshly and harden of in-situ concrete properties were measured by the slump and compressive strength tests. The results showed the water content and permeability of embankment materials and boring methods affected on compressive strength of in-situ concrete pile.

저.중준위 방사성 폐기물의 고화처리 및 처분용 용기 개발을 위한 기초연구(1) (A Basical Study on the Preparing of Container Used for Treatment and Disposal of Low-and Intermediate-Level Radioactive Wastes(I))

  • 홍원표;정수영;황의환;조헌영;김철규
    • 한국세라믹학회지
    • /
    • 제25권2호
    • /
    • pp.101-110
    • /
    • 1988
  • In order to improve the physical properties of concrete used for treatment and disposal container of low-and intermediate-level radioactive wastes, OPC (ordinary portland cement), ACPC (asphalt coated portland cement) and EPC(epoxy-portland cement) concrete specimens were prepared, and the physical properties of each concrete specimen were tested. According to the experimental results, EPC concrete showed better physical properties than ACPC and OPC concrete, however, ACPC concrete proved to be a best material for treatment and disposal container of radwastes in view of economic aspect and physical properties.

  • PDF