• 제목/요약/키워드: Concrete filling

검색결과 281건 처리시간 0.021초

콘크리트 충전상태에 따른 보부재의 휨거동에 관한 연구 (Effect of Concrete Filling Conditions on Flexural Behavior of Beam Members)

  • 장일영;윤영수;노병철;박훈규
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.3-11
    • /
    • 2000
  • There is a possibility of poor-state concrete filling condition due to segregation and interlocking of aggregate and paste when a high performance concrete is used at reinforced concrete structure without compaction. This study was conducted to evaluate the flexural behavior of high performance concrete beams with design parameters such as c, t and different concrete filling conditions. Different concrete filling conditions were intentionally made such that the first type specimen was soundly cast to obtain the perfect concrete filling condition. Second type was cast in such a way that up to the longitudinal tensile reinforcement from the top, good concrete was filled while poor concrete was poured for the bottom part to simulate the poor strength, workability and unsatisfactory compaction. Third type was cast in such a was that up to the neutral axis of the beam section from the top, good concrete was filled while so did for the bottom part as the second type. The test results were analyzed in terms of load-displacement response, failure pattern, crack width and crack spacing. The test results indicate that have no effect of concrete filling conditions on the yielding strength of structures. But, have a grate influence on the stiffness and ductility of structures.

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • 제24권3호
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.

고유동성 콘크리트를 이용한 보부재(A시리즈)의 충전상황별 휨거동 연구 (A Study on the Flexural Behavior according to Filling conditions of Beams Members(A Siries) Using High Performance Concrete)

  • 장일영;윤영수;엄주환;송재호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.306-311
    • /
    • 1996
  • This paper persents the flexural behavior of high performance concrete beams having different concrete filling conditions. Three tests were conducted on full-scale beam specimens with design concrete compressive strength of 400 kg/$\textrm{cm}^2$. Different concrete filling conditions were intentionally made such that the first beam specimen was soundly cast to obtain the perfect concrete filling condition. Second beam specimen was cast in such a way that up to the longitudinal tensile reinforcement from the top, good concrete was filled while poor concrete was poured for the bottom part to simulate the poor workamanship, workability and unsatisfactory compaction. Third beam specimens was cast in such a way that up to the neutral axis of the beam section from the top, good concrete was filled while so did for the bottom part as the second beam specimen. The test results were analyzed in terms of load-displacement response, formation of crack, crack width, crack spacing and shift of neutral axis. An evaluation of the ductile response fo three different beam specimens was made in combination with the ultimate load accoding to the three different concrete filling conditions.

  • PDF

강관충전용 콘크리트의 재료개발에 관한 연구 (Development of the Concrete for Concrete Filled Steel Tubular Columns)

  • 김진철;김훈;박연동;최진만;이덕찬;이도헌
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.101-106
    • /
    • 1996
  • In this study, filling performance of concrete is investigated experimentally for the developmenmt of the concrete to be used in concrete filled steel tubular columns with inner diaphrams. Water-cement ratio with 3 levels, unit water contents with 5 levels, unit coarse aggregate contents with 5 levels, and slump flow with 3 levels are selected for test variables. For the estimation of the filling properties of the concrete, slump flow, V-type funnel time, U-type box height are measured and compared. A device which simulates the steel tubular column is designed and three kinds of concrete are tested with it. As the results, the filling performance is decreased with increasing coarse aggregate content. And, within the scope of this study, concretes with coarse aggregate content less than 880 kg/$\textrm{m}^3$ show good filling performance. To prevent excessive settlement of the concrete pumped into the steel tubular column, slump flow should be controlled within the limited range.

  • PDF

모듈형 LNG 저장탱크용 콘크리트 충전성능 가이드라인 제시 (Guideline for Filling Performance of Concrete for Modular LNG Storage Tanks)

  • 이동규;이건우;박기준;김성욱;박정준;김영진;최명성
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.86-93
    • /
    • 2018
  • Recently, the use of composite steel plate concrete structural modules filled with concrete between steel plates of complex internal structure, in which a large amount of studs are installed, is increasing in order to reduce the weight and to increase workability of structures such as LNG storage tanks. However, in Korea, there is no systematic criterion for evaluating the construction performance of composite steel plate concrete structural modules. Therefore, in this study, we propose a filling guideline of concrete for composite steel plate structural module. For this purpose, high filling performance concrete with general strength range was formulated and tested for filling ability and permeability for each formulation. Rheology analysis was performed to quantitatively evaluate the flow characteristics of concrete. The reliability of $T_{500}$ and plastic viscosity was evaluated to reflect the results of each test, and a guideline for high filling concrete satisfying the reliability of 0.9 or more was derived by reflecting the results of the study on the relationship between the $T_{500}$ and plastic viscosity. Through final fill-box test, filling performance was verified and guidelines were suggested.

Evaluation criteria for filling performance of high-flowing concrete using steel-concrete panel

  • Dong Kyu Lee;Jae Seon Kim;Myoung Sung Choi
    • Advances in concrete construction
    • /
    • 제16권5호
    • /
    • pp.231-241
    • /
    • 2023
  • The purpose of this study was to evaluate the practical application of high-flowing concrete for a steel-concrete panel (SCP) module for a liquefied natural gas (LNG) storage tank. We evaluated the physical properties and filling performance of the developed concrete for the SCP module. First, slump tests were performed to evaluate the performance of the proposed standards for the filling tests. All the concrete mixes showed satisfactory performance. Based on the results of the previous study, the reliability of the required time measured using the T500 test and the rheometer results measured before and after pumping was 0.94, indicating that segregation and blocking should not occur. L-box and U-box tests were conducted before and after pumping. All the recommended standards showed satisfactory performance. The SCP structural module for LNG storage tanks was fabricated to a full scale to evaluate its practical application at the final site. Satisfactory filling performance was confirmed for all the specimens.

Low Carbon Concrete Prepared with Scattering-Filling Coarse Aggregate Process

  • Shen, Weiguo;Zhang, Chuan;Li, Xinling;Shi, Hua;Wang, Guiming;Tian, Xiaowu
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.309-313
    • /
    • 2014
  • The volume fraction of the coarse aggregate in the conventional plastic concrete is controlled relatively low to ensure a required workability. In this paper, a new type of coarse aggregate interlocking concrete with strength ranging from C30 to C80 was prepared with scattering-filling aggregate process. The strength of concrete prepared with this method increases obviously whereas the shrinkage decreases significantly, the cement dosage in the concrete decreased 20 % at the same time. The microhardness of the ITZ between the cement paste and scattering-filling aggregate is higher than that of the original aggregate, the ITZ become narrower and tighter also. The interlocking and more even distribution of the coarse aggregate and the water absorption of the addition of extra amount of coarse aggregates contribute to the strength and performance improvement of the concrete prepared with scattering-filling aggregate process.

모듈형 LNG 저장탱크용 자기 충전 콘크리트의 충전 성능평가 실용화 연구 (Study on Filling Capacity of Self-Consolidating Concrete for Modular LNG Storage Tank)

  • 이동규;이건우;최명성
    • 한국안전학회지
    • /
    • 제33권6호
    • /
    • pp.50-57
    • /
    • 2018
  • The purpose of this study is to evaluate the practical application of the self consolidating concrete for the steel concrete pannel (SCP) in module LNG storage tank proposed in the previous research. We evaluated the physical properties and filling performance of developed concrete for the SCP module. First, a slump flow test was conducted to evaluate the performance of the proposed guidelines for the filling test. As a result, all of the concrete used showed satisfactory performance. Based on the results of the previous study, it was found that the reliability of the required time measured by the $T_{500}$ test and the rheometer results measured before and after pumping was 0.94 which means the separation and blocking should not occur. The L-box test and the U-box test were conducted before and after pumping. All of the guidelines suggested showed satisfactory performance. SCP module for LNG storage tanks was fabricated on actual size scale to evaluate the practical application at the final site. As a result, it was confirmed that satisfactory filling performance was obtained in all the specimens.

인장철근영역 콘크리트 다짐불량에 따른 철근콘크리트 보의 거동 (An Experimental Study on The Behavior of Reinforced Concrete Beams with Poor-Compacted Concrete in Tensile Steel Zone)

  • 박훈규;안영기;장일영;박병희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.143-150
    • /
    • 2008
  • 철근콘크리트 구조물에서 배근상태에 따라서는 다짐불량에 의한 재료분리 및 골재폐쇄현상이 발생하여 채움이 제대로 되지 않는 경우가 발생할 수 있다. 본 연구에서는 그 영향을 충분히 고려하지 않고 있는 재료분리에 따른 중립축이하 인장부 콘크리트가 보부재 거동에 미치는 영향 파악을 위한 실험을 수행하여, 보부재의 인장 철근영역 콘크리트의 유효성 파악을 위한 연구를 수행하였다. 실험결과 인장철근영역 콘크리트의 재료분리에 따른 거동은 부재항복강도에는 미치는 영향이 없으나, 부재 휨연성, 전단저항능력을 저하시키는 것으로 나타났다.

Axial behavior of RC column strengthened with SM-CFST

  • Jiang, Haibo;Li, Jiahang;Cheng, Quan;Xiao, Jie;Chen, Zhenkan
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.773-784
    • /
    • 2022
  • This paper aims to investigate the axial compressive behavior of reinforced concrete (RC) columns strengthened with self-compacting and micro-expanding (SM) concrete-filled steel tubes (SM-CFSTs). Nine specimens were tested in total under the local axial compression. The test parameters included steel tube thickness, filling concrete strength, filling concrete type and initial axial preloading. The test results demonstrated that the initial stiffness, ultimate bearing capacity and ductility of original RC columns were improved after being strengthened by SM-CFSTs. The ultimate bearing capacity of the SM-CFST strengthened RC columns was significantly enhanced with the increase of steel tube thickness. The initial stiffness and ultimate bearing capacity of the SM-CFST strengthened RC columns were slightly enhanced with the increase of filling concrete strength. However, the effect of filling concrete type and initial axial preloading of the SM-CFST strengthened RC columns were negligible. Three equations for predicting the ultimate bearing capacity of the SM-CFST strengthened RC columns were compared, and the modified equation based on Chinese code (GB 50936-2014) was more precise.