• Title/Summary/Keyword: Concrete filled FRP tube

Search Result 32, Processing Time 0.016 seconds

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Axial Loading Behaviors and ACI 440 Code Applied Ultimate Axial Strength Formula of CFRP Strengthened Circular CFT Columns (탄소섬유쉬트로 보강된 원형CFT기둥의 압축거동과 ACI 440 code를 응용한 압축내력예측식 제안)

  • Park, Jai-Woo;Hong, Young-Kyun;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • This study investigates the axial behavior of CFRP strengthened circular CFT columns and proposes the design formula of CFRP strengthened circular CFT columns. 10 specimens were prepared and axial loading test were conducted to investigate the retrofitting effects of CFRP composites on CFT columns. The main parameters are the number of FRP sheets and D/t ratio. Test results showed that the CFRP retrofitting enhanced the load bearing capacity of the circular CFT columns. Finally, A ACI 440 code applied ultimate axial strength formula is proposed to predict the ultimate strength of CFRP strengthened circular CFT columns. The proposed formula are good agreement with the test results.