• Title/Summary/Keyword: Concrete bar

Search Result 1,083, Processing Time 0.028 seconds

Bond Stress of the Bar Removed Rust with Concrete (전식녹을 제거한 철근과 콘크리트의 부착응력에 관한 실험적 연구)

  • Choi, Hyo-Seok;Lee, Joo-Il;Ryu, Soo-Hyun;Yu, Ho-Hyun;Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.188-194
    • /
    • 2001
  • A reinforced concrete structure is complex structure that works as one body with bonding role of steel bar and concrete. The bonding action between steel bar and concrete makes possible the compound structure. The transmission of mutual strength of the steel bar with concrete in structure is determined by the bonding characteristic of steel bar and concrete surface. But the efficiency of bonding characteristic of steel bar is Questionable by the corrosion cause by the delay construction term, the wrong management, etc. So this study investigate bonding characteristic of reinforced concrete using pull-out test method which steel bar removed rust and the principal variables of this study are concrete compression strength and the degree of corrosion. The result showed that bonding strength tend to increase when removed rust of steel bar whereas it tend to decrease when not removed rust.

  • PDF

Probing of Steel Bar Location inside Concrete using Multi-electrode Array (다전극 배열을 이용한 콘크리트 매립 철근의 위치탐사)

  • 이형우;임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.663-666
    • /
    • 2003
  • Using numerical analysis modeling of Multi-electrode Array that could be applied to the corrosion state measurement of a reinforcing steel bar in concrete, the steel bar location inside concrete can be probed by the investigation of the change of the measured impedance from concrete surface determined by the electrical impedance of interface between the steel bar and concrete, the electrical resistivity of concrete, the array of electrodes and the relative location and diameter of the steel bar.

  • PDF

Pullout Bond Characteristics of Polymer Cement Slurry Coated Rebars (폴리머 시멘트 슬러리 도장철근의 인발부착 특성)

  • 김현기;김민호;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.117-122
    • /
    • 2001
  • Recently, epoxy-coated re-bar used to the structure partly and put to practical use step, but not economical and appeared to the defect of deterioration of long term bond strength between concrete. The method for complement the defect of epoxy coated re-bar, study of polymer cement slurry coated re-bar started and basic properties appeared to excellent, but study of bond properties embedded in concrete specimens insufficient until now. This study attempts to examination of using possibility for bond strength of polymer cement slurry coated re-bar between concrete specimens compare to ACI Code and KS Code through pull-out test of 15cm$\times$15cm$\times$15cm specimens with polymer cement slurry coated re-bar as polymer cement ratio 50%, 100%, 150%, coating thickness 250${\mu}{\textrm}{m}$, 440${\mu}{\textrm}{m}$ and curing age. In the results of this study, the bond strength of polymer cement slurry coated re-bar compare to plain re-bar, epoxy coated re-bar decreased St/BA-modified polymer cement slurry coated re-bar, but bond strength of PA-modified polymer cement slurry coated re-bar appeared to excellent results. The bond properties of polymer cement slurry coated re-bar between concrete will be obtain more precise results according to compressive strength change of concrete and re-bar diameter size.

  • PDF

The Application of Glass Fiber Reinforced Plastic Bar to Concrete (유리섬유보강 플라스틱바의 콘크리트 적용성에 관한 연구)

  • 김경수;김재욱;문장수;배주성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.669-675
    • /
    • 1997
  • This paper investigates the performances of GFRP bar and its possibility for using a substitute of steel bar. GFRO bar was made with introducing the glass fiber into GTR added UPE. We carried out the tensile test of GFRP and steel bar and out the three point bend test bond-test and fracture energy measurement on the GFRP bar and steel bar reinforced concrete. The GFRP bar was excellent as comparison with steel bar in the contribution to the energy absorption and the ductility of concrete. But its tensile, bond and bend strengthes were comparatively small. In order to improve these defects, we judged that glass fibers in GFRP bar must be completely adhesive one another by the impregnating glass fibers into UPE.

  • PDF

Tension Stiffening and Bond Length of Reinforced Concrete Members Subjected to Uniaxial Tension (1축 인장 부재의 인장강성 및 부착길이 효과)

  • 조능호;정원기;강희철;서정문;전영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.873-878
    • /
    • 2000
  • Tension stiffening effects of reinforced concrete member with large diameter bar, mainly used at reactor building of nuclear power plant, are studied by uniaxial structural tests. Bond length and stress of steel bar, size of steel bar, and compressive strength of concrete are evaluated to tension stiffening by uniaxial tests. Problems and solution during the uniaxial test are suggested. The prevent splitting cracks, concrete cover-to-bar diameter ratio $c/d_{b}$ is kept 2.6~2.8. Because the bond length is increased as the size of steel bar, the specimen length of the D35 steel bar is required at least 2.0 m. The specimen length must be decided with bond length as well as concrete cover-to-bar diameter ratio to prevent splitting crack.

A Study on the Relationship between Degree of Rust Condition and Bond Strength in Reinforced Concrete Members (철근의 부식정도와 부착강도에 대한 연구)

  • 유환구;이병덕;김국한;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.621-626
    • /
    • 1998
  • An experimental investigation on the reinforcing bar corrosion and relationshid of reinforcing bar and concrete bond strength has been conducted to establish the allowable limit of rust in the construction field. The reinforcing bars used in this study were rusted before embedding in concrete. The first component of this experiment is to make rust of reinforcing bar rust artificially based on Faraday's theory at certain rates such as 2, 4, 6, 8 and 10% of reinforcing bar weight. For estimation of the amount of rust by weight, Clarke's solution and Shot blasting were adopted and compared. Parameters include 240 and 450kg/㎠ of compressive strengths and diameter of reinforcing bar (16, 19 and 25mm) corresponding development length for pull-ort test. And, pull-out tests were carried. out according to KSF 2441 and ASTMC 234 to investigate the effect of the corrosion rate on reinforcing bar-concrete bond behavior. It is found from the test results that the test techniques for corrosion of bar used in this study is relatively effective and correct test method. Results shows that up to 2% of rust increases the bond strength regardless of concrete strength and diameter of reinforcing bar like the existing data. It might be because of the roughness from rust. As expected, the bond strength increases as compressive strength of concrete increases and the diameter of bar decreases.

  • PDF

Bond Strength of Reinforcing Steel to High Strength, High Flow Belite Concrete (고강도, 고유동 Belite 콘크리트의 부착성능)

  • 김상준;조필규;이세웅;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.653-660
    • /
    • 1998
  • Bond strength of reinforcing bar to high-performance concrete using belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that the specimens with belire cement concrete show higher bond strength than those with portland cement concrete. Bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfies the modification factor for top reinforcement. The results also show that the bond strength is function of the square root of concrete compressive strength and cover thickness. The recently developed high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

  • PDF

Concrete Shear Strength of Light Weight Concrete Beams Reinforced with GFRP bar (GFRP bar 경량콘크리트 보의 콘크리트 전단강도)

  • Jin, Min-Ho;Jang, Hee-Suk;Kim, Chung-Ho;Baek, Dong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.177-180
    • /
    • 2008
  • Recently, the research of FRP bar as an alternative reinforcing material in reinforced concrete structures has increased to get an innovative solution to the corrosion problem. In addition to the noncorrosive nature of FRP materials, they also have a high strength-to-weight ratio. Therefore, when light weight concrete reinforced with FRP bar is used in marine environment, for instance floating structures, some advantages can be expected. But researches for the light weight concrete structure using FRP bar as a flexural reinforcement are limited to date. In this paper, the concrete shear contribution of the light weight concrete beam reinforced with GFRP bar was studied. Experiment for beams varying concrete compressive strengths and flexural reinforcement ratios was conducted and analysed. The test results showed that 75% of values obtained from proposed equation in preceding research were well agreed with the test results and were better results than the one predicted by the ACI 440.1R-06 code.

  • PDF

A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar (GFRP bar를 휨보강근으로 사용한 경량골재콘크리트 슬래브의 거동에 관한 기초적 연구)

  • Jeon, Sang Hun;Shon, Byung Lak;Kim, Chung Ho;Jang, Heui Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, to intend anticorrosive effect and weight reduction of conventional reinforced concrete slab, lightweight concrete slab reinforced with glass fiber reinforced polymer(GFRP) bar was considered and some basic behaviour of the slab were investigated. Measurement of splitting tensile strength and fracture energy of the concrete, a number of flexural experiment of the slab, numerical analysis using nonlinear finite element analysis, and comparison of the experimental results to the numerical analysis, were conducted. As a result, even the weight of the lightweight concrete slab could be reduced by about 28% than the normal concrete slab, failure load of the lightweight concrete slab was 36% smaller than the normal concrete slab. Such a thing can be attributed to the lower axial stiffness and lower bond strength of GFRP bar. In the numerical analysis, to consider decreasing property of bond strength of the lightweight concrete, interface element was used between the concrete and the GFRP bar elements and this method was shown to be a better way for the numerical analysis to approach the experimental results.

Bond Characteristic Between Lightweight Concrete and GFRP Bar (경량콘크리트와 GFRP 보강근의 부착 특성)

  • Son, Byung-Lak;Kim, Myung-Sik;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.112-121
    • /
    • 2013
  • FRP reinforced lightweight concrete structures can offer corrosion resistance and weight reduction effect simultaneously, so practical use of the structures may be expected afterwards. But to make concrete structures using lightweight concrete and FRP bar, that can resist external forces without internal slip of the FRP bar, it is very important to understand bond characteristic between lightweight concrete and FRP bar. During that time, a lot of studies for bond behaviors of FRP bar in normal concrete were conducted, but studies for bond behavior of FRP bar in lightweight concrete are very limited to date. So, bond characteristic between lightweight concrete and helically deformed GFRP bar was investigated in this study. Three main parameters were considered in experimental investigation: type of rebar, concrete type, and compressive strength of lightweight concrete. As an experimental result, it could be known that bond strength of helically deformed GFRP bar in lightweight concrete was 0.49 times bond strength of steel reinforcement in normal concrete.