• Title/Summary/Keyword: Concrete Structures Repair

Search Result 366, Processing Time 0.026 seconds

Structural behavior of R/C Beam Strengthened with Steel Plate, Carbon Fiber Sheets, and Carbon Fiber Laminate. (강판, 탄소섬유쉬트, 탄소섬유판으로 휨보강된 천근콘크리트보의 구조적 거동)

  • Lee, Young-Jea;Moon, Heui-Jeung;Lee, Kyung-Un;Jung, Sang-Jin;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.691-696
    • /
    • 1997
  • In recent years, stengthening of beam by steel plate, carbon fiber sheets, and carbon fiber laminate is spotlighted in order to repair and rehabilitation of R/C structures. In this study, 3 method of rehabilitation technic are analyzed from the tests. Test parameters are the width of cracks, the method of repair and rehabilitation, the magnitude of existing load. Deflection, failure load, strains of reinforcing bar, strains of sheet and plates are measured during tests. The failure mode and ultimate load are analyzed from these measured data. Test result shows that the width of cracks and the magnitude of existing load do not make any difference of ultimate flexural capacity.

  • PDF

An Evaluation on the Flexural Strength of Concrete Beams Repaired by Polymer Resin (폴리머계로 보수한 철근콘크리트 보의 휨성능 평가)

  • Kim, Byung-Guk;Shin, Young-Soo;Hong, Gi-Suop;Hong, Yung-Kyun;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.107-112
    • /
    • 1997
  • A series of reinforced concrete beams was tested to evaluate the flexural performance of the repaired RC beams. The key parameters for this study were the size and location of the patch, and the repair materials, including polymer, polymer-cementitious and cementitious materials. The repaired specimens failed by a typical flexural mode with minor interfacial bond failure. Beams repaired with polymer, polymer-cementitious and cementitious materials recover 100%, 91%, and 97% of the flexural strength respectively, while beams with cement mortar lose approximately 30% of the strength. Compared with the pressure injection techniques the specimens repaired with patching techniques show low flexural strength, with significant interfacial bond failure. Location and size of the repaired part do not affect the recovering performance. Interfacial behavior between repair and strengthening materials is the major influencing factor for the composite structures.

  • PDF

A Study on the Chemical Resistance Performance of Injection Type Leakage Repair Materials used in Crack Parts of Concrete Structures under the Contaminated Groundwater Environment (오염된 지하수 환경 하의 콘크리트 구조물 균열부위에 사용되는 주입형 누수보수재료의 화학저항성능 시험평가 연구)

  • Kim, Soo-Yeon;Yoo, Jae-Yong;Kim, Byung-Il;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.411-419
    • /
    • 2019
  • Underground concrete structures are constructed under a geographical environment called underground and exposed to various environments that promote deterioration. Among them, groundwater promotes deterioration of underground concrete structures due to contaminated water from the ground. In this study, the chemical resistance performance test evaluation of five different receptors for a total of 15-type leakage repair materials of five series was conducted to determine the chemical stability of the leakage repair material used in the crack area. The results show a general increase and decrease in most chemical receptors, but the biggest increase and decrease was shown in acrylic systems, which were found in sodium chloride and sodium hydroxide, and epoxy was found in hydrochloric acid. The cement system is showing a lot of increase and decrease in sodium chloride. It is expected that the results of these studies will be used as a basis for chemical stabilization in the development of new materials.

Standard Manual for the Diagnosis and Repairing Leakage Cracks of Underground Structures in Apartment Housing - Maintenance Diagnosis - (공동주택 부위별 표준 누수 진단 매뉴얼 - 유지관리 진단 -)

  • Kim, Soo Yeon;Lee, Jung Hun;Lee, Sung Jin;Jang, Duk Bae;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.191-192
    • /
    • 2018
  • This study presents the standard methods of diagnosis and repair to prevent and maintain the durability degradation caused by leakage cracks in underground structures in Korea. The third part after the announcement of the existing maintenance plan, The environmental characteristics and leakage condition of underground structures, the causes of deterioration of underground concrete structures, and countermeasures and leakage equipment were described.

  • PDF

Analysis for the Types of Damages and Deterioration in Irrigation and Drainage Structures (농업기반 수리구조물의 노후손상 유형화 분석)

  • Kim, Kwan-Ho
    • KCID journal
    • /
    • v.14 no.1
    • /
    • pp.67-79
    • /
    • 2007
  • Concrete repair and reinforcement is a complex process, presenting unique challenges very different from those experience in the field of construction. The purpose of this study is to analyze the pattern and mechanism of deteriorations in irrigation and drainage structure. Damage and deteriorated structures are classified with several types. This provides a survey of crack repair methods, including a summary of the procedures that are being used. It is systematically evaluated with the disintegration on irrigation & drainage structure; drainage sluice gate, pumping station, drainage pumping station. Following the evaluation of the irrigation & drainage structure, a suitable repair and reinforcing procedure can be selected based on this report

  • PDF

Effective Bond Length of FRP Sheets Externally Bonded to Concrete

  • Ben Ouezdou, Mongi;Belarbi, Abdeldjelil;Bae, Sang-Wook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.127-131
    • /
    • 2009
  • Strengthening and repair of concrete structures using externally bonded fiber reinforced polymer (FRP) composite sheets has been popular around the world during the last two decades. However, premature failure due to debonding of the FRP is one of the important issues still to be resolved. Numerous research studies have dealt with the debonding problem in terms of Effective Bond Length (EBL), however, determination of this length has not yet been completely assessed. This paper summarizes previous works on the EBL and proposes a new relationship of the EBL with the FRP stiffness based on the existing experimental data collected in this study.

Theoretical analysis of self-centering concrete piers with external dissipators

  • Cao, Zhiliang;Guo, Tong;Xu, Zhenkuan;Lu, Shuo
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1313-1336
    • /
    • 2015
  • The self-centering prestressed concrete (SCPC) bridge pier with external dissipators is a novel structure, aiming at reducing residual deformation and facilitating the post-earthquake repair. This paper presents the configuration and mechanical behaviors of the pier. A theoretical model for the lateral force-displacement relationship under cyclic loading is developed. The proposed model comprises an iterative procedure which describes the deformation of dissipators under different conditions. Equations of pier stiffness after gap opening, as well as the equivalent viscous damping ratio, etc., are derived based on the proposed model. Existing cyclic load test results were used to validate the proposed model, and good agreement is observed between the analytical and test results.

An Experimental Study on the Carbonation Properties of Concrete According to Accelerating Carbonation Conditions (촉진중성화 조건에 따른 콘크리트의 중성화 특성에 관한 실험적 연구)

  • 문형재;이의배;송민섭;주지현;조봉석;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.41-44
    • /
    • 2004
  • Recently, in the case of domestic, for all that the deterioration environment about the carbonation of reinforced concrete structures is accelerated, systematic diagnosis and researches are not completed. And the selection techniques of repair material and method used under the situation that the indicator and the performance evaluation method are nor established are dependant on existing experience. Therefore, the purpose of this study is intend to present fundamental data for the reasonable selection of repair material and method. durability design and longevity on the deteriorated reinforced concrete structures, through computing the carbonation depth and velocity coefficient by accelerating carbonation test under various accelerating conditions and investigating the application of carbonation evaluation method. The results of this study are as follow; The resistances to carbonation are increased when the W/C ratio if lower and the treatment of surface coating is executed. And the carbonation depth and velocity coefficient according to accelerating carbonation test conditions are increased when the conditions of temperature, relative humidity and $CO_2$density are higher individually.

  • PDF

Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber

  • Kandekar, Sachin B.;Talikoti, Rajashekhar S.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Retrofitting is an alteration of existing member or component of the structure. In civil engineering point of view, it is called strengthening of the old structure. Deterioration of structures may be due to aging, corrosion, failure of joints, earthquake forces, increase in service loads, etc. Such structures need urgent repair, retrofitting and strengthening to avoid collapse, cracking and loss in strength or deflection. Advanced techniques are required to be developed for the repair of structural components to replace conventional techniques. This paper focuses exclusively on torsional behaviour of Reinforced Concrete (RC) beams and retrofitted RC beams wrapped with aramid fiber. Beams were retrofitted with aramid fiber by full wrapping and in the form of 150 mm wide strips at a spacing of 100 mm, 150 mm, 200 mm respectively using epoxy resin and hardener. A total 15 numbers of RC beams of 150 mm×300 mm×1300 mm in size were cast, 3 beams are tested as control specimens, and 12 beams are tested for torsion up to the failure and then retrofitted with aramid fiber. Experimental results are validated with the help of data obtained by finite element analysis using ANSYS. The full wrapping configuration of aramid fiber regains 105% strength after retrofitting. With the increase in spacing of fabric material, torsional strength reduces to 82% with about 45% saving in material.

Strength Characteristics of Epoxy Cement Mortar without Hardening Agent (경화제를 사용하지 않은 에폭시 시멘트 모르타르의 압축강도 특성에 관한 연구)

  • Park, Young-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.207-211
    • /
    • 2007
  • The durable lifetime of RC structures is shortened by various reasons, which are the generation of cracks in construction and service term, the exterior deterioration according to climatic condition, the surface damage due to chloride attack and the corrosion of reinforced bars. The durability of concrete structures is nevertheless able to be increased by the method and the material of reinforcement and repair. The epoxy resin is widely used for reinforment and repair of concrete because of the superiority in mechanical property, adhesive property, abrasion resistance, impact resistance and chemical resistance. The epoxy cement mortar with hardening agent has a lot of disadvantages that are troublesome mixing work, weakened weatherability and high cost for hardening agent. In this study, the mix proportion of mortar is presented just only with epoxy resin and some admixtures, and the test result of mortar without hardening agent shows the higher strength than the mortar with hardening agent. In the mix proportion, the weight of epoxy resin must be less than 15% of the unit weight of cement, and 10% of unit weight of cement is adequate for the weight of admixtures.

  • PDF