• Title/Summary/Keyword: Concrete Panel

Search Result 542, Processing Time 0.02 seconds

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

Experimental research on seismic behavior of novel composite RCS joints

  • Men, Jinjie;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.209-221
    • /
    • 2015
  • Results from an experimental study on the seismic response of six composite reinforced concrete column-to-steel beam interior joints are presented. The primary variable investigated is the details in the joint. For the basic specimen, the main subassemblies of the beam and column are both continuous, and the steel beam flanges extended to the joint are partly cut off. Transverse beam, steel band plates, cove plates, X shape reinforcement bars and end plates are used in the other five specimens, respectively. After the joint steel panel yielded, two failure modes were observed during the test: local failure in Specimens 1, 2 and 4, shear failure in Specimens 3, 5 and 6. Specimens 6, 3, 5 and 4 have a better strength and deformation capacity than the other two specimens for the effectiveness of their subassemblies. For Specimens 2 and 4, though the performance of strength degradation and stiffness degradation are not as good as the other four specimens, they all have excellent energy dissipation capacity comparing to the RC joint, or the Steel Reinforced Concrete (SRC) joint. Based on the test result, some suggestions are presented for the design of composite RCS joint.

A Study on the Stabilizing Method against Landslide using Slide Suppressor Wall (산사태 억지벽체공법에 관한 연구)

  • Kim, Hong-Taek;Gang, In-Gyu;Yeom, Gyeong-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.06c
    • /
    • pp.94-110
    • /
    • 1994
  • This paper Voposes a stabilizing method against landslide using slide suppressor wall reinforced with soil nails. Included are a Evuedlwe to predict earth Uessures acing on nailed-slide suppressor wall and a method of analysis of the laterally loaded concrete pile. Based rut the Voposed Vocedure, the emcignt installation type and inclusion angle of nails are analyzed. Also, optimum location of the slide suppressor wall composed of concrete panel and stabilizing pile is examined using the UC Vogram. Finally, an example is given to illustrate the analysis and desisa procedure of the proposed slope reinforcing method.

  • PDF

Structural Strength of Beam-to-CFT Connections with Vertical Diaphragm (수직다이아프램을 사용한 충전형 각형강관기둥 접합부의 내력평가)

  • Kim, Kyungtae;Lee, Heon-Woo;Kim, Young-Ki;Kim, Taejin;Kim, Jong-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2017
  • This paper investigates structural characteristics of internal vertical diaphragm and its influence on the connection strength between concrete filled tubular(CFT) column and beam. CFT columns are hybrids that combine two materials in one member. They have the benefits of steel for high tensile strength and ductility and of concrete for high compressive strength and stiffness. Analytical method of the flexural strength of vertical diaphragm to account moment transfer between panel zones is presented using yield line theory. Connection design is verified by a set of monotonic tests and numerical analysis with different diaphragm thicknesses. Plastic zones of CFT flange was found and matched closely to FEM results. Both analytical and experimental results showed good agreement that vertical diaphragm effectively alleviates the stress and transfer the force.

A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading

  • Kim, Jaehong;LaFavet, James M.;Song, Junho
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.439-456
    • /
    • 2007
  • Reinforced concrete (RC) joint shear strength models are constructed using an experimental database in conjunction with a Bayesian parameter estimation method. The experimental database consists of RC beam-column connection test subassemblies that maintained proper confinement within the joint panel. All included test subassemblies were subjected to quasi-static cyclic lateral loading and eventually experienced joint shear failure (either in conjunction with or without yielding of beam reinforcement); subassemblies with out-of-plane members and/or eccentricity between the beam(s) and the column are not included in this study. Three types of joint shear strength models are developed. The first model considers all possible influence parameters on joint shear strength. The second model contains those parameters left after a step-wise process that systematically identifies and removes the least important parameters affecting RC joint shear strength. The third model simplifies the second model for convenient application in practical design. All three models are unbiased and show similar levels of scatter. Finally, the improved performance of the simplified model for design is identified by comparison with the current ACI 352R-02 RC joint shear strength model.

Vibration performance characteristics of a long-span and light-weight concrete floor under human-induced loads

  • Cao, Liang;Liu, Jiepeng;Zhou, Xuhong;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.349-357
    • /
    • 2018
  • An extensive research was undertaken to study the vibration serviceability of a long-span and light-weight floor subjected to human loading experimentally and numerically. Specifically, heel-drop test was first conducted to capture the floor's natural frequencies and damping ratios, followed by jumping and running tests to obtain the acceleration responses. In addition, numerical simulations considering walking excitation were performed to further evaluate the vibration performance of a multi-panel floor under different loading cases and walking rates. The floor is found to have a high frequency (11.67 Hz) and a low damping ratio (2.32%). The comparison of the test results with the published data from the 1997 AISC Design Guide 11 indicates that the floor exhibits satisfactory vibration perceptibility overall. The study results show that the peak acceleration is affected by the walking path, walking rate, and adjacent structure. A simpler loading case may be considered in design in place of a more complex one.

Analysis for Behavior of Green Geosynthetic Reinforced Soil Walls by Laboratory Model Tests (실내모형실험에 의한 녹화보강토벽의 거동분석)

  • Cho, Yong-Sung;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • The existing geotextile reinforced soil wall methods have a demerit in terms of esthetic view because concrete panel or block are used as wall facing of the methods. If grass planting walls could be used in reinforced soil slope or wall methods, efficiency of the methods would be increased with maximization of advantage of the methods. In this study, some possible methods in which grass planting wall is used as wall facing are devised. A series of laboratory model tests were performed to investigate the behavior of newly devised methods in order to compare with the results of each others. As a major result, it was found that this kinds of grass wall facing methods could be accepted as a new construction method even in the sense of stability.

  • PDF

Density and Strength Properties of Lightweight Composites with replacement ratio of Paper Ash (제지애시의 치환율에 따른 경량 경화체의 밀도 및 강도특성)

  • Lee, Seung-Ho;Choi, Se-Jin;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.164-165
    • /
    • 2015
  • Recently, the reason of using foamed concrete is for core of panel, filler of construction material to give lightness. However, cement causes environmental problem. The cement generates CO2 but we normally use cement during manufacturing foamed concrete. Accordingly, this study focuses on dynamic properties of matrix according to the addition ratio of paper ash to make lightweight matrix with blast furnace slag and paper ash which are industrial by-product. The experiment progessed in order to select th optimum mixing ratio of the blast furnace slag and paper ash. There are totally 7 levels such as B100:P0, B95:P5, B90:P10, B85:P15, B80:P20, B75:P25, B70:P30 in this study. As a result of the test, B95:P5 matrix has the best density and compressive strength.

  • PDF

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

Ultimate load behavior of horizontally curved composite plate girders

  • Shanmugam, N.E.;Basher, M.A.;Khalim, A.R.
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.325-348
    • /
    • 2009
  • This paper is concerned with steel-concrete composite plate girders curved in plan. At the design stage these girders are assumed sometimes to act independent of the deck slabs resting on them in order to simplify the analysis. The advantage of composite action between the steel girders and concrete deck is not utilized. Finite element modeling of such composite action in plate girders is considered in this paper. Details of the finite element modeling and the non-linear analysis of the girders are presented along with the results obtained. Tension field action in the web panels similar to those observed in the straight plate girders is also noticed in these girders. Finite element and experimental results in respect of curved steel plate girders and straight composite plate girders tested by other researchers are presented first to assess the accuracy of the modeling. Effects of parameters such as curvature, steel flange width and web panel width that affect the behavior of composite girders are then considered in the analyses. An approximate method to predict the ultimate strength of horizontally curved composite plate girders is also presented.