• 제목/요약/키워드: Concrete Filled

검색결과 988건 처리시간 0.028초

Investigation on SCFs of concrete-filled circular chord and square braces K-joints under balanced axial loading

  • Chen, Yu;Hu, Kang;Yang, Jian
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1227-1250
    • /
    • 2016
  • Most of the research work has been conducted on K-joints under static loading. Very limited information is available in consideration of fatigue strength of K-joints with concrete-filled chord. This paper aims to describe experimental and numerical investigations on stress concentration factors (SCFs) of concrete-filled circular chord and square braces K-joints under balanced axial loading. Experiment was conducted to study the hot spot stress distribution along the intersection of chord and braces in the two specimens with compacting concrete filled in the chord. The test results of stress distribution curves of two specimens were reported. SCFs of concrete-filled circular chord and square braces K-joints were lower than those of corresponding hollow circular chord and square brace K-joints. The corresponding finite element analysis was also conducted to simulate stress distribution along the brace and chord intersection region of joints. It was achieved that experimental and finite element analysis results had good agreement. Therefore, an extensive parametric study was carried out by using the calibrated finite element model to evaluate the effects of main geometric parameters and concrete strength on the behavior of concrete-filled circular chord and square braces K-joints under balanced axial loading. The SCFs at the hot spot locations obtained from ABAQUS were compared with those calculated by using design formula given in the CIDECT for hollow SHS-SHS K-joints. CIDECT Design Guide was generally quite conservative for predicting SCFs of braces and was dangerous for predicting SCFs of chord in concrete-filled circular chord and square braces K-joints. Finally SCF formulae were proposed for circular chord and square braces K-joints with concrete-filled in the chord under balanced axial loading. It is shown that the SCFs calculated from the proposed design equation are generally in agreement with the values derived from finite element analysis, which were proved to be reliable and accurate.

콘크리트충전 강합성 교각의 구조적 거동에 관한 연구 (The Study on the Structural Behavior of Concrete-filled Composite Piers)

  • 김유경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.151-158
    • /
    • 2000
  • In this paper, It is presented that concrete-filled composite piers have large energy-absorption capacity and high strength and stiffness on account of mutual confinement between the steel plate and filled-in concrete. Concrete-filled composite columns were tested to failure under axial compression and cyclic lateral loading. Displacement ductility index obtained by using the load-displacement relation has been increased with the increment of filled-in concrete length, while it has been decreased according to the incrementation of width-thickness ratio, slenderness ratio and the number of loading cycles. Structural behavior and ductility index estimated for the seismic design showed that composite piers could be used as a very efficient earthquake-resistant structural member. The response modification factor could be re-evaluated for concrete-filled composite piers.

  • PDF

Analysis of concrete-filled steel tubular columns with "T" shaped cross section (CFTTS)

  • Wang, Qin-Ting;Chang, Xu
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.41-55
    • /
    • 2013
  • This paper presents a numerical study of axially loaded concrete-filled steel tubular columns with "T" shaped cross section (CFTTS) based on the ABAQUS standard solver. Two types of columns with "T" shaped cross section, the common concrete-filled steel tubular columns with "T" shaped cross section (CCFTTS) and the double concrete-filled steel tubular columns with "T" shaped cross section (DCFTTS), are discussed. The failure modes, confining effects and load-displacement curves are analyzed. The numerical results indicate that both have the similar failure mode that the steel tubes are only outward buckling on all columns' faces. It is found that DCFTTS columns have higher axial capacities than CCFTTS ones duo to the steel tube of DCFTTS columns can plays more significant confining effect on concrete. A parametric study, including influence of tube thickness, concrete strength and friction coefficient of tube-concrete interface on the axial capacities is also carried out. Simplified formulae were also proposed based on this study.

Failure of lightweight aggregate concrete-filled steel tubular columns

  • Ghannam, Shehdeh;Jawad, Yahia Abdel;Hunaiti, Yasser
    • Steel and Composite Structures
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Tests on steel tubular columns of square, rectangular and circular section filled with normal and lightweight aggregate concrete were conducted to investigate the failure modes of such composite columns. Thirty-six full scale columns filled with lightweight and normal weight aggregate concrete, eighteen specimens for each, were tested under axial loads. Nine hollow steel sections of similar specimens were also tested and results were compared to those of filled sections. The test results were illustrated by a number of load-deflection and axial deformation curves. The results showed that both types of filled columns failed due to overall buckling, while hollow steel columns failed due to bulging at their ends (local buckling). According to the above-mentioned results, and due to low specific gravity and thermal conductivity of the lightweight concrete the further interest should be concentrated in replacing the normal concrete by the lightweight aggregate concrete.

탄소성 대변형 해석을 이용한 콘크리트 충전강관(CFT) 기둥의 극한강도에 관한 해석적 연구 (An Analytical Investigation on the Ultimate Strength of Concrete-Filled Steel Tube Columns using Elasto-Plastic Large Deformation Analysis)

  • 장갑철;장경호
    • 한국공간구조학회논문집
    • /
    • 제7권6호
    • /
    • pp.69-74
    • /
    • 2007
  • 교량의 교각과 같은 원형기둥구조물의 성능과 강도을 향상시키기 위해 최근 콘크리트 충전강관(CFT: concrete-filled steel tube)의 적용이 점차 증가하고 있다. 이러한 콘크리트 충전강관 구조물의 정확한 소성설계를 위해서는 사용된 재료인 강재 및 콘크리트의 대변형 거동을 구현할 수 있는 소성모델이 필요하다. 본 연구에서는 사용강재의 실험을 통하여 제안된 소성모델을 적용한 탄소성 대변형 해석을 개발하였으며 콘크리트 충전강관 기둥 해석과 실험 결과에 비교하여 그 정도 및 타당성을 검증하였다. 그리고 개발된 프로그램을 이용하여 콘크리트 충전강관 기둥의 초기처짐이 극한장도에 미치는 영향 및 상관관계를 명확히 파악하였다.

  • PDF

반복하중을 받는 콘크리트충전 강합성 기둥의 연성에 관한 연구 (A Study on the Ductility of Concrete-Filled Composite Columns under Cyclic Loading)

  • 송준엽;권영봉;김성곤
    • 한국지진공학회논문집
    • /
    • 제5권6호
    • /
    • pp.11-19
    • /
    • 2001
  • 일정한 축하중과 반복적인 횡하중을 받는 콘크리트충전 강합성 기둥의 내진성능에 관한 실험적인 연구가 수행되었다. 강합성 기둥은 충전콘크리트가 강판의 국부좌굴로 인한 내측방향의 변형을 억제하고, 강판의 콘크리트 측압에 대한 구속효과와 같은 상호작용에 의해서 콘크리트와 강재의 단순누가강도 이상의 강도증진효과를 가지며, 강재 및 콘크리트기둥에 비해 우수한 연성 및 에너지 흡수능력을 나타내었다. 단면분할법을 이용하여 콘크리트충전 강합성 기둥의 비선형 모멘트-곡률 관계를 예측해 보았으며, 이는 실험결과와 비교적 잘 일치하는 것으로 나타났다. 또한, 구조물의 내진설계의 중요한 요소인 강합성 기둥의 연성 및 응답수정계수를 평가해 보았다. 실험결과 강합성 기둥은 효과적인 내진구조 부재로 판단되었다.

  • PDF

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.

Static push-out test on steel and recycled tire rubber-filled concrete composite beams

  • Han, Qing-Hua;Xu, Jie;Xing, Ying;Li, Zi-Lin
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.843-860
    • /
    • 2015
  • Recycled tire rubber-filled concrete (RRFC) is employed into the steel-concrete composite structures due to its good ductility and crack resistance. Push-out tests were conducted to investigate the static behavior of steel and rubber-filled concrete composite beam with different rubber mixed concrete and studs. The results of the experimental investigations show that large studs lead a higher ultimate strength but worse ductility in normal concrete. Rubber particles in RRFC were shown to have little effect on shear strength when the compressive strength was equal to that of normal concrete, but can have a better ductility for studs in rubber-filled concrete. This improvement is more obvious for the composite beam with large stud to make good use of the high strength. Besides that the uplift of concrete slabs can be increased and the quantity and width of cracks can be reduced by RRFC efficiently. Based on the test result, a modified empirical equation of ultimate slip was proposed to take not only the compressive strength, but also the ductility of the concrete into consideration.

Behaviour of cold-formed steel hollow and concrete-filled members

  • Jane Helena, H.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • 제5권1호
    • /
    • pp.35-47
    • /
    • 2005
  • This paper presents the results of a series of tests carried out on hollow and concrete-filled coldformed steel sections subjected to axial and bending forces. The effects of eccentricity ratio and strength of in-fill on the behaviour of these sections were studied. A total of forty-eight medium sized columns and six beams were tested to failure. Extensive measurements of material properties, strains, axial shortening and lateral deflection were carried out. Interaction of local and overall buckling was observed in the tests. Failure mode observations were local buckling coupled with overall buckling. A description of the specially fabricated end fixtures for applying eccentric loading to the columns and to simulate pinned end condition is also presented. The experimental results of hollow columns are compared with the existing Indian, British and American codes of practice and the results of concrete-filled columns are compared with EC4 recommendations. It is seen that in the case of hollow columns predictions based on British and American codes of practice and in the case of concrete-filled columns predictions based on EC4 recommendations agree reasonably well with the experimental results. From the experiments it is seen that the provision of in-fill substantially increases the ultimate load carrying capacity of the order of one and a half to two times and the increase in strength of the in-filled concrete from a low grade concrete of compressive strength 24.94 MPa to a high grade concrete of compressive strength 33.26 MPa increases the ultimate load carrying capacity by one and a half times irrespective of the eccentricity of loading.

비선형 응력-변형률 특성을 갖는 콘크리트 충전 원형강관 보의 모멘트-곡률 관계 (Moment-Curvature Relation of Concrete Filled Circular Steel Tubular Beam with Nonlinear Stress-Strain Properties)

  • 박우진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권3호
    • /
    • pp.195-202
    • /
    • 2005
  • 본 연구에서는 순수 휨을 받는 중공 원형강관, 내부에 경량기포콘크리트 및 보통콘크리트를 충전한 원형강관 부재에 대하여 강재의 압축부에 대한 좌굴특성을 고려하고, 충전된 콘크리트의 삼축압축응력 발생에 따른 강도증가 현상을 고려하여 모멘트-곡률 관계를 계산하였다. 경량기포콘크리트를 충전하더라도 해석적으로 간편하게 모멘트-곡률 관계를 계산할 수 있다는 것을 확인하였으며, 보통콘크리트를 충전한 경우에는 해석값이 실험값에 근접한 결과를 추정함을 알 수 있었다. 또한 기존의 실험결과를 이용하여 본 연구에서 개발된 모멘트-곡률 관계 해석방법의 유효성을 검증하였다.