• Title/Summary/Keyword: Concrete Elastic Modulus

Search Result 473, Processing Time 0.028 seconds

Development of A Strength Test Method for Irregular Shaped Concrete Block Paver (이형 콘크리트 블록의 강도 평가방법에 관한 연구)

  • Lin, Wuguang;Park, Dae-Geun;Ryu, SungWoo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.

Estimating Concrete Compressive Strength Using Wave Propagation Method (Wave Propagation 기법을 이용한 콘크리트의 압축강도 추정)

  • Kwon, Soo-Ahn;An, Ji-Hwan;Suh, Young-Chan;Cho, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.63-69
    • /
    • 2005
  • For many years, the compressive strength of concrete has been regarded as an important index in determining concrete pavement quality. The compressive strength of the sample cores from the field has been used as quality index of concrete pavement. However, this process is time consuming and requires a lot of labor. Recently, the M-E Design Methodology in the pavement design based on the elastic modulus has been adopted. Therefore, several NDT methodologies have been adopted for QA/QC in the field and for the pavement design. Among various NDT methods, the wave propagation method can be used to measure the elastic modulus of concrete because the wave velocity is directly related to the elastic modulus. Therefore, in this study the wave propagation method was used for estimating the concrete modulus. The relationship between the compressive strength measured in he laboratory and the elastic modulus measured by the wave propagation method was analyzed, and the compressive strength was estimated from the elastic modulus for various mix types. The results showed that the relationship between the elastic modulus and the compressive strength was observed and the relationship varied depending on the aggregate types.

  • PDF

Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network

  • Nguyen, Thuc Nhu;Yu, Yang;Li, Jianchun;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.541-553
    • /
    • 2019
  • Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network (ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not the only factor contributing to the stiffness change, and various factors have to be included during the evaluation.

Analysis of Dynamic and Static Elastic Modulus of In-situ Marine Concrete (현장 해양 콘크리트의 동탄성계수와 정탄성계수 분석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.437-443
    • /
    • 2009
  • Impact echo method estimating the soundness of concrete measures the dynamic elastic modulus of specimens which are different with static elastic modulus tested by uni-axial compression test. Thus, this paper investigates the relationships between dynamic and static elastic modulus based on in-situ concrete cores. Also, dynamic elastic modulus was compared with compressive strength. Concrete cores were obtained from about 20 to 70 years concrete structures at three different harbors which were Incheon, Wando, and Masan in Korea. In order to investigate the influence of exposure condition on the relationship, air zone, splash zone, and tidal zone were selected. Different harbors showed the different relationships between dynamic and static elastic modulus, but exposure conditions have no influence on the relationship between dynamic and static elastic modulus. Also, the relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The relationship equations were proposed to estimate the relationships properly.

A Proposal of Elastic Modulus Equation for High-Strength and Ultra-High-Strength Concrete (국내 실정에 적합한 고강도 및 초고강도 콘크리트의 탄성계수식 제안)

  • 장일영;송재호;박훈규;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.245-250
    • /
    • 1996
  • The aim of this study is to suggest the new elastic modulus equation that suits to a domestic situation to coincide the improved mechanical properties of high-strength concrete and ultra-high-strength concrete. For thish purpose, this study collected the laboratory data more than 400 connceted with the the modulus of elasticity that performed in this country and also analyzed it statistically. The compressive strength of investigated concrete ranged from 400 to 1,400kg/$\textrm{cm}^2$. As a result, a practical and useful elastic modulus equation is proposed, it can be considered as most suitable equation in domestic situation.

  • PDF

Effect of Size Factor on Estimating Elastic Modulus of Disk-Shaped Concrete Specimen Using Impact Resonance Test (충격공진법을 이용한 콘크리트 원판 시편의 탄성계수 추정에 크기 인자가 미치는 영향)

  • Kim, Min-Suk;Son, Joeng Jin;Lee, Chang Joon;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • In this work, a depth-by-depth evaluation on the deterioration of concrete is suggested by utilizing disk shaped concrete specimens. Dynamic elastic modulus of cylindrical concrete was measured using a free-free resonance column method and compared with dynamic elastic modulus of disk-shaped concrete measured by impulse excitation technique(IET) and impact resonance(IR). According to the results of the experiment, both IET and IR methods showed a smaller difference in dynamic elastic modulus with smaller deviation in data when thickness of the disk specimen was increased. This trend was more evident from dynamic elastic modulus measured by IR method compared to that measured by IET. Variation in data was also smaller with the IR result. To increase the accuracy of the data, it is recommended to use the IR method for disk specimen with a diameter of 100mm and a thickness of 25mm.

Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios (순환골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 특성)

  • Sim, Jongsung;Park, Cheolwoo;Park, Sung Jae;Kim, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.213-218
    • /
    • 2006
  • As a manufacturing process of recycled aggregate improves the quality of recycled aggregate shall be sufficient enough to be used for structural concrete. This study characterized compressive strength and elastic modulus of concrete that used recycled coarse and fine aggregate. Before the strength tests, the fundamental characteristics of recycled aggregate were preliminarily analyzed and the recycled aggregate satisfied the class 1 requirements in KS F 2573. As the replacement ratio increased, the compressive strength and elastic modulus of recycled aggregate concrete decreased. When the coarse and fine aggregates were completely replaced with the recycled, the compressive strength and elastic modulus were decreased by 13% and 31%, respectively. Based on the test results, this study suggests equations for predicting the compressive strength and elastic modulus of the recycled aggregate concrete with respect to the replacement ratio. The values from the equations were in good agreement with the test data from this study and others.

A Proposal of Elastic Modulus Equation for High-Strength and Ultra-High-Strength Concrete (국내의 실험자료를 이용한 고강도 및 초고강도 콘크리트의 탄성계수식 제안)

  • 장일영;박훈규;윤영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.213-222
    • /
    • 1996
  • This paper presents the improved elastic modulus equation more appropriate to predict the modulus of elasticity of structural elements designed and made by high- and ultra high-strength concrete under domestic situation in Korea. To justify and assess the proposed elastic modulus equation, more than 400 laboratory test data domestically available in the literature and having the range of 400 to 1.000kg/$\textrm{cm}^2$ in concrete compressive strength were collected and analyzed statistically. Comparison of the proposed elastic modulus equation with the previously suggested equations in the ACI363R. CEB-FIP, NS3473 and New-RC were also presented to demonstrate the applicability to practice.

Evaluation of Stress-Strain Relationship and Elastic Modulus Equation of Steel Fiber Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트의 응력-변형률 곡선 및 탄성계수 추정식 평가)

  • 장동일;손영현;조광현;김광일
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.13-20
    • /
    • 2000
  • In this study, the compression test of steel fiber reinforced high-strength concrete have been performed with varying strengths and volume factions of steel fiber. Three types of matrices including low strength concrete( c'=30 MPa), medium strength concrete( c'=50 MPa), and high strength concrete( c'=70 MPa) were selected. Five types of fiber fractions were studied including 0.0%, 0.5%, 0.75%, 1.0%, and 1.5% by volume. From the results of the compressive strength test, the post-peak characteristics of the stress-strain relationship were investigated, and the existing equations to predict the elastic modulus were experimentally evaluated.

Evaluation of strength of waste material mixed concrete using digital image (디지털이미지를 이용한 폐기물 혼합 콘크리트의 강도 평가)

  • Yoon, Hyun-Suk;Lee, Ki-Ho;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1390-1395
    • /
    • 2005
  • To analyze the effects of oyster shell particles, inserted in the self-hardening matrix such as cement paste, on strength, homogenization analysis using micro structure was used to estimate and assess the apparent elastic modulus of oyster shell particle. DIB modeling technique was used to represent of the micro structure of oyster shell mixed concrete. The results showed that the apparent elastic modulus of LOS (large oyster shell particle) was changed with the amount of LOS inserted. In particular, when the amount of LOS was 200% of the weight of cement, the apparent elastic modulus of LOS tended to decrease rapidly. This could mean that the strength of oyster shell mixed concrete is much affected by LOS inserted material in mixed ratio of 200%.

  • PDF