• Title/Summary/Keyword: Concrete Elastic Modulus

Search Result 473, Processing Time 0.025 seconds

Long-term development of compressive strength and elastic modulus of concrete

  • Yang, Shuzhen;Liu, Baodong;Yang, Mingzhe;Li, Yuzhong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.263-271
    • /
    • 2018
  • Compressive strength and elastic modulus of concrete are constantly changing with age. In order to determine long-term development of compressive strength and elastic modulus of concrete, an investigation of C30 concrete cured in air conditions was carried out. Changes of compressive strength and elastic modulus up to 975 days were given. The results indicated that compressive strength and elastic modulus of concrete rapidly increased with age during the initial 150 days and then increased slowly. The gain in elastic modulus was slower than that of compressive strength. Then relationships of time-compressive strength, time-elastic modulus and compressive strength-elastic modulus were proposed by regression analysis and compared with other investigations. The trends of time-compressive strength and time-elastic modulus with age agreed best with ACI 209R-92. Finally, factors contributed to long-term development of compressive strength and elastic modulus of concrete were proposed and briefly analyzed.

Effects of environmental temperature and age on the elastic modulus of concrete

  • Yang, Shuzhen;Liu, Baodong;Li, Yuzhong;Zhang, Minqiang
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.737-746
    • /
    • 2019
  • Concrete mechanical properties change constantly with age, temperature, humidity and the other environmental factors. This research studies the effects of temperature and age on the development of concrete elastic modulus by a series of prism specimens. Elastic modulus test was conducted at various temperatures and ages in the laboratory to examine the effects of temperature and age on it. The experimental results reveal that the concrete elastic modulus decreases with the rise of temperature but increases with age. Then, a temperature coefficient K is proposed to describe the effects of temperature and validated by existing studies. Finally, on the basis of K, analytical models are proposed to determine the elastic modulus of concrete at a given temperature and age. The proposed models can offer designers an approach to obtain more accurate properties of concrete structures through the elastic modulus modification based on actual age and temperature, rather than using a value merely based on laboratory testing.

A Proposal of an Elastic Modulus Equation for High-Strength and Ultra High-Strength Concrete

  • Jang, II-Young;Park, Hoon-Kyu;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.43-48
    • /
    • 2006
  • This paper presents an elastic modulus equation more appropriate for predicting the elastic modulus of structural materials designed for and made of high- and ultra high-strength concrete under current domestic situation in Korea. In order to validate and assess the proposed elastic modulus equation, more than 400 laboratory test data available in the domestic literature on compressive strength of concrete in the range between 400 to 1,000 $kgf/cm^2$ were used and analyzed statistically. Comparison analyses of the proposed elastic modulus equation with previously suggested equations of ACI363R, CEB-FIP, NS3473 and New-RC are also presented to demonstrate its applicability in domestic practice.

Effect of Temperature and Aging on the Relationship between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.445-450
    • /
    • 2001
  • The paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model equations are proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperature of 10, 23, and 50 $^{\circ}C$. Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus, which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The proposed relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type, temperature, and aging.

  • PDF

Modulus degradation of concrete exposed to compressive fatigue loading: Insights from lab testing

  • Song, Zhengyang;Konietzky, Heinz;Cai, Xin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.281-296
    • /
    • 2021
  • This article analyzed the modulus degradation of concrete subjected to multi-level compressive cyclic loading. The evolution of secant elastic modulus is investigated based on measurements from top loading platen and LVDT in the middle part of concrete. The difference value of the two secant elastic moduli is reduced when close to failure and could be used as a fatigue failure precursor. The fatigue hardening is observed for concrete during cyclic loading. When the maximum stress is smaller the fatigue hardening is more obvious. The slight increase of maximum stress will lead to the "periodic hardening". The tangent elastic modulus shows a specific "bowknot" shape during cyclic loading, which can characterize the hysteresis of stress-strain and is influenced by the cyclic loading stresses. The deterioration of secant elastic modulus acts a similar role with respect to the P-wave speed during cyclic loading, can both characterize the degradation of the concrete properties.

Presumption of Optimum Concrete Elastic Modulus according to Content of Crushed Stone Powder (폐석분 함유율에 따른 최적의 콘크리트 탄성계수 추정)

  • Park Do-Kyong;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.1 s.19
    • /
    • pp.101-107
    • /
    • 2006
  • While a Study with regard to the measurement on Concrete Strength and the Change of Drying Shrinkage in accordace with Content Ratio of Crushed Stone Powder, it is being analyzed as the result that the strength according to Content Ratio of crushed Stone Powder is somewhat lowering. Accordingly, it is the real situation that the Concrete mixed with Crushed Stone Powder is utilized for non-structural material, not for the structural material. Therefore, this Research willing to furnish the suitable utilizing scheme for construction site as well as practical life by means of conduct the experiment on both Concrete Pressure Strength according to mixture with Crushed Stone Powder and Elastic Modulus, it also presumes the optimum Elastic Modulus Equation after analysis of comparison with common concrete strength. As the result of the experiment, in case of the Content Ratio of Crushed Stone Powder is less than 5%, it did not display a big difference in its both strength and matter-property compare with common concrete. In case of Elastic Modulus, when the Pressure Strength is 50% and 40% respectively, the Elastic Modulus Equation accords very well with the provided condition of Quadratic function, and as the result of the Presumption on Elastic Modulus according to Content of Crushed Stone Powder, in case the Pressure Strength is 50%, Elastic Modulus Equation showed that Error Ratio of Cubic function is at degree of 0.0005%, in case the Pressure Strength is 40%, Elastic Modulus Equation was accorded well with the value of the experimental data likely as the Error Ratio of Cubic function is at the degree around 0.0034%, respectively.

Analysis of Confinement Effectiveness for FRP Confined Concrete Columns (FRP로 구속된 콘크리트 압축부재의 구속효과 분석)

  • Choi, Eunsoo;Choi, Seung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.19-24
    • /
    • 2011
  • Concrete columns strengthening effect due to FRP (Fiber Reinforced Polymer) confinement depends on the elastic modulus of the FRP. This study analyzes the retrofitting effect of FRP confinements according to elastic modulus of FRPs using the existing data and suggests a practical model to assess the strengthening effect. This study subdivides the FRP elastic modulus into three parts based on normal concrete and steel elastic modulus. The slope and the y-axis intersection seem to increase with increasing FRP elastic modulus. In addition, the strengthening effect does not develop up to some amount of FRP confinement having relatively smaller elastic modulus than the compressive elastic modulus of concrete. In this case, a linear model to assess the strengthening effect is hard to be used. Thus, this study suggests that the FRP jackets having 2 times larger elastic modulus than that of concrete are recommended to be used for retrofit of concrete and that a linear model can be applied for the case. The suggested model shows nearly the same result regardless to the restraint of the y-axis intersection. This has been observed at the model of steel confinement and, thus, is a reliable result.

A Basic Study for evaluation on the Elastic Modulus of Recycled Aggregate Concrete by using Composite Model (복합이론에 의한 순환골재 콘크리트의 탄성계수 평가에 관한 기초적 연구)

  • Kim, Hyun-Wook;Kim, Ji-Yoon;Kim, Wan-ki;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.73-74
    • /
    • 2012
  • The elastic modulus of recycled aggregate concrete (RAC) can be evaluated by using composite models with experiment. In this study, Hashin's composite model was adapted to evaluate elastic modulus considering physical properties of recycled coarse aggregate (RCA) that mortar is attached. Elastic modulus testes for cement paste, mortar and recycled coarse aggregate concrete were carried out considering W/C and recycled coarse aggregate content rate. As a result, the elastic modulus of RAC was evaluated comparing with both experiment results and the existing estimation formula. Those can be used for further studies as a preliminary data.

  • PDF

Elastic modulus in large concrete structures by a sequential hypothesis testing procedure applied to impulse method data

  • Antonaci, Paola;Bocca, Pietro G.;Sellone, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.499-516
    • /
    • 2007
  • An experimental method denoted as Impulse Method is proposed as a cost-effective non-destructive technique for the on-site evaluation of concrete elastic modulus in existing structures: on the basis of Hertz's quasi-static theory of elastic impact and with the aid of a simple portable testing equipment, it makes it possible to collect series of local measurements of the elastic modulus in an easy way and in a very short time. A Hypothesis Testing procedure is developed in order to provide a statistical tool for processing the data collected by means of the Impulse Method and assessing the possible occurrence of significant variations in the elastic modulus without exceeding some prescribed error probabilities. It is based on a particular formulation of the renowned sequential probability ratio test and reveals to be optimal with respect to the error probabilities and the required number of observations, thus further improving the time-effectiveness of the Impulse Method. The results of an experimental investigation on different types of plain concrete prove the validity of the Impulse Method in estimating the unknown value of the elastic modulus and attest the effectiveness of the proposed Hypothesis Testing procedure in identifying significant variations in the elastic modulus.

A numerical method for estimating the elastic modulus of recycled concrete

  • Zhou, Xinzhu;Zheng, Jianjun;Chen, Ting;Zhang, Jian;Wang, Chuanyang;Wu, Jiefeng
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.161-170
    • /
    • 2019
  • This paper aims at presenting a numerical method for estimating the elastic modulus of recycled concrete with crushed aggregates. In the method, polygonal aggregates following a given sieve curve are generated, and placed into a square simulation element with the aid of the periodic boundary condition and the overlap criterion of two polygonal aggregates. The mesostructure of recycled concrete is reconstructed by embedding an old interfacial transition zone (ITZ) layer inside each recycled aggregate and by coating all the aggregates with a new ITZ layer. The square simulation element is discretized into a regular grid and a representative point is selected from each sub-element. The iterative method is combined with the fast Fourier transform to evaluate the elastic modulus of recycled concrete. After the validity of the numerical method is verified with experimental results, a sensitivity analysis is conducted to evaluate the effects of key factors on the elastic modulus of recycled concrete. Numerical results show that the elastic modulus of recycled concrete increases with the increase of the total aggregate content and the elastic moduli of old and new ITZ but decreases with increasing the replacement ratio of recycled aggregate and the thicknesses of old and new ITZ. It is also shown that, for a replacement ratio of recycled aggregate smaller than 0.3, the elastic modulus of recycled concrete is reduced by no more than 10%.