• Title/Summary/Keyword: Concept Modeling

Search Result 1,093, Processing Time 0.024 seconds

Improvement Method for the Post-Management End System of a Landfill by Applying Total Pollutant Load Concept (오염총량 개념을 적용한 매립장 사후관리종료제도 개선 방안)

  • Chun, Seung-Kyu;Sim, Nak-Jong;Jeon, Eun-Jeong;Ryu, Don-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.15-23
    • /
    • 2021
  • A method of improving the post-management end system of a landfill that reflected total pollutant load was applied to the SUDOKWON 1st Landfill Site. Modeling results showed that the ratio of remaining methane, when compared to the total maximum potential of 2,521 × 106 Nm3, was estimated to be 8.8% in 2020, 7.0% in 2030, and 6.5% in 2040. If the average oxidation rate of 89.1% in 2005-2019 was applied, the ratio decreased by 1.01% in 2020, 0.76% in 2030, and 0.70% in 2040. This suggests that if the amount of methane generated is all emitted from the surface of the landfill after 2025, the real amount emitted to the atmosphere is less than that in 2019; therefore, the post-management end is possible. According to the results of trend analysis of the quality of leachate water, effluent criteria for Biochemical Oxygen Demand (BOD) can be satisfied in 2024, while those for Chemical Oxygen Demand (COD) and Total Nitrogen (T-N) can be satisfied in 2047 and 2117, respectively. If the post-management end system changed based on total pollutant load, the post-management can be terminated BOD today and COD within a few years; however, the fact that T-N could be terminated only after 2041 shows the need to fundamentally change management methods.

Reconstruction Of Photo-Realistic 3D Assets For Actual Objects Combining Photogrammetry And Computer Graphics (사진측량과 컴퓨터 그래픽의 결합을 통한 실제 물체의 사실적인 3D 에셋 재건)

  • Yan, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.147-161
    • /
    • 2021
  • Through photogrammetry techniques, what current researches can achieve at present is rough 3D mesh and color map of objects, rather than usable photo-realistic 3D assets. This research aims to propose a new method to create photo-realistic 3D assets that can be used in the field of visualization applications. The new method combines photogrammetry with computer graphics modeling. Through the description of the production process of three objects in the real world - "Bullet Box", "Gun" and "Metal Beverage Bottle," it introduces in details the concept, functions, operating skills and software packages used in the steps including the photograph object, white balance, reconstruction, cleanup reconstruction, retopology, UV unwrapping, projection, texture baking, De-Lighting and Create Material Maps. In order to increase the flexibility of the method, alternatives to the software packages are also recommended for each step. In this research, 3D assets are produced that are accurate in shape, correct in color, easy to render and can be physically interacted with dynamic lighting in texture. The new method can obtain more realistic visual effects at a faster speed. It does not require large-scale teams, expensive equipment and software packages, therefore it is suitable for small studios and independent artists and educational institutions.

A Study on Innovation Resistance and Adoption Regarding a EXtended Reality Devices (확장현실 기기의 혁신저항과 수용에 관한 연구)

  • Jin, Seok
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.5
    • /
    • pp.918-940
    • /
    • 2021
  • In this study, the concept of eXtended Reality Devices(XR) is defined, how it is applied by industry and how it will develop in the future, and based on the expanded integrated technology acceptance theory and innovation resistance, We tried to confirm through empirical analysis how the influencing variables affect. We carry out the analysis of the hypotheses using PLS Structural Equation Modeling. According to the empirical analysis results, this study confirms that innovativeness has a significant effect on UTAUT2's acceptance variables(performance expectation, effort expectation, hedonic motivation, price value) for XR devices, and these variables affect attitudes and acceptance of XR. and the pace of change of XR has a significant effect on perceived risk, and the perceived risk perceived by consumers mediates the pace of change and innovation resistance, and has a significant effect on innovation resistance. and innovation resistance to XR devices had a significant negative effect on acceptance. This study has its meaning because it found out that it deals expansively and comprehensively with personal innovation, the UTAUT2's acceptance variables, and the effects of perceived risk factors mediating the pace of change and resistance to innovation. In addition, it suggests that in order for innovative technologies such as XR to advance to the stage of market expansion, it is important to present strategies to reduce resistance to new technologies as much as the value to be provided to consumers.

Development and Validation of Digital Twin for Analysis of Plant Factory Airflow (식물공장 기류해석을 위한 디지털트윈 개발 및 실증)

  • Jeong, Jin-Lip;Won, Bo-Young;Yoo, Ho-Dong;Kim, Tag Gon;Kang, Dae-Hyun;Hong, Kyung-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • As one of the alternatives to solve the problem of unstable food supply and demand imbalance caused by abnormal climate change, the need for plant factories is increasing. Airflow in plant factory is recognized as one of important factor of plant which influence transpiration and heat transfer. On the other hand, Digital Twin (DT) is getting attention as a means of providing various services that are impossible only with the real system by replicating the real system in the virtual world. This study aimed to develop a digital twin model for airflow prediction that can predict airflow in various situations by applying the concept of digital twin to a plant factory in operation. To this end, first, the mathematical formalism of the digital twin model for airflow analysis in plant factories is presented, and based on this, the information necessary for airflow prediction modeling of a plant factory in operation is specified. Then, the shape of the plant factory is implemented in CAD and the DT model is developed by combining the computational fluid dynamics (CFD) components for airflow behavior analysis. Finally, the DT model for high-accuracy airflow prediction is completed through the validation of the model and the machine learning-based calibration process by comparing the simulation analysis result of the DT model with the actual airflow value collected from the plant factory.

Exploring Learning Progressions for Global Warming: Focus on Middle School Level (지구 온난화에 대한 학습발달과정 탐색: 중학교를 중심으로)

  • Yu, Eun-Jeong;Lee, Kiyoung;Kwak, Youngsun;Park, Jaeyong
    • Journal of Science Education
    • /
    • v.46 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • The purpose of this study is to explore learning progressions for global warming at middle school level. For this purpose, we conducted a construct modeling approach that specifies constructs, item designs, outcome spaces, and measurement model steps from April to October, 2021. In order to develop student assessment items, we analyzed the 2015 revised curriculum and textbooks of middle school and categorized a concept hierarchy for each construct to create a construct map. The assessment items were developed into multiple-choice, short answer, and essay questions according to the selected constructs to strengthen the linkage between the constructs and the items. Based on the three-step grading criteria for each item, an online assessment of 21 minor items developed for middle school students show that many students met 'high' level, but none met 'low' level. In this manner, the initial set lower anchor was reset to level 0, the original set upper anchor was lowered from level 4 to level 3, and the hypothetical learning progression for global warming was presented in the following order: phenomenal, conceptual, and mechanical understandings. The results of the research have raised implications for reorganizing the next science curriculum and improving the assessment system.

A Study on the Adaptability of Oxygen Reduction System to Fire in Cold Storage through Fire Simulation Analysis (화재시뮬레이션 분석을 통한 냉장·냉동 창고 화재의 저산소 시스템 적응성에 관한 연구)

  • Min-Seok Kim;Sang-Bum Lee;Se-Hong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.117-127
    • /
    • 2023
  • Purpose: The number of Cold Storages at home and abroad is on the rise, fires in large Cold Storages have recently occurred. As fires continue to occur and property damage is on the rise every year, the importance of preventing fires in large Cold Storage is growing. Method: Real Cold Storages were investigated on-site and fire cases were analyzed to derive and analyze fire risk, and the ORS, which is emerging as an adaptive fire prevention technology of Cold Storage, was investigated through FDS. Result: oxygen concentration 21, 15.7% and 17.7, 16.7% were analyzed through FDS, and flashover was reached within 3~4 minutes from 21, 17.7, 16.7%, but if oxygen concentration was lowered to 15.7%, it didn't ignite for 13 minutes. Conclusion: This study understood the concept and general part of the ORS, modeled the freezer through FDS, and analyzed the oxygen concentration to analyze the fire protection adaptability of the ORS. In the future, it is expected that large-scale empirical experiments and related regulations will be prepared to provide solutions for fire prevention in Cold Storages in blind spots of fire.

Strategy and Technology for Digital Transformation of Design and Construction of RC Structures (철근콘크리트골조 설계와 현장관리 디지털전환 전략과 기술개발)

  • Chee Kyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • This paper presents a conceptual strategy and technologies for the digital transformation of design and construction of reinforced concrete (RC) structures. The development of an automated detail design strategy for RC structures is described. Integrated digital platform based on 5D BIM concept is proposed for the replacement of the current technology environment-based 2D CAD. Generally, the detail design development is labor-intensive and iterative. Effective automation of relevant aspects can dramatically improve productivity and accuracy. The proposed solutions for the automated BIM modeling based on the rebar and formwork detail design automation achieves the productivity and accuracy sufficient for site application. The platform integrates and manages the information flow between each solution or application and provides it to all participants of the project. Finally, it is expected that the proposed strategy and technologies can be further enhanced to achieve the productivity and accuracy needed for widespread site application and digital transformation.

A Technology on the Framework Design of Virtual based on the Synthetic Environment Test for Analyzing Effectiveness of the Weapon Systems of Underwater Engagement Model (수중대잠전 교전모델의 무기체계 효과도 분석을 위한 합성환경기반 가상시험 프레임워크 설계 기술)

  • Hong, Jung-Wan;Park, Yong-Min;Park, Sang-C.;Kwon, Yong-Jin(James)
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.291-299
    • /
    • 2010
  • As recent advances in science, technology and performance requirements of the weapons system are getting highly diversified and complex, the performance requirements also get stringent and strict. Moreover, the weapons system should be intimately connected with other systems such as watchdog system, command and control system, C4I system, etc. However, a tremendous amount of time, cost and risk being spent to acquire new weapons system, and not being diminished compared to the rapid pace of its development speed. Defense Modeling and Simulation(M&S) comes into the spotlight as an alternative to overcoming these difficulties as well as constraints. In this paper, we propose the development process of virtual test framework based on the synthetic environment as a tool to analyze the effectiveness of the weapons system of underwater engagement model. To prove the proposed concept, we develop the test-bed of virtual test using Delta3D simulation engine, which is open source S/W. We also design the High Level Architecture and Real-time Infrastructure(HLA/RTI) based Federation for the interoperation with heterogeneous simulators. The significance of the study entails (1)the rapid and easy development of simulation tools that are customized for the Korean Theater of War; (2)the federation of environmental entities and the moving equations of the combat entities to manifest a realistic simulation.

A Study of Pre-Service Secondary Science Teacher's Conceptual Understanding on Carbon Neutral: Focused on Eye Tracking System (탄소중립에 관한 중등 과학 예비교사들의 개념 이해 연구 : 시선추적시스템을 중심으로)

  • Younjeong Heo;Shin Han;Hyoungbum Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.2
    • /
    • pp.261-275
    • /
    • 2023
  • The purpose of this study was to analyze the conceptual understanding of carbon neutrality among secondary school science pre-service teachers, as well as to identify gaze patterns in visual materials. For this study, gaze tracking data of 20 pre-service secondary school science teachers were analyzed. Through this, the levels of conceptual understanding of carbon neutrality were categorized for the participants, and differences in gaze patterns were analyzed based on the degree of conceptual understanding of carbon neutrality. The research findings are as follows. First, as a result of performing modeling activities to predict carbon emissions and removals until 2100 using the concept of '2050 carbon neutrality,' 50% of the participants held a conception that carbon emissions would continue to increase. Additionally, 25% of the participants did not properly understand the causal relationship between net carbon dioxide emissions and cumulative concentrations. Second, the gaze movements of the participants regarding visual materials related to carbon neutrality were significantly influenced by the information presented in the text area, and in the case of graphs, the focus was mainly on the data area. Moreover, when visual data with the same function and category were arranged, participants showed the most interest in materials explaining concepts or visual data placed on the left side. This implies a preference for specific positions or orders. Participants with lower levels of conceptual understanding and inadequate grasp of causal relationships among elements exhibited notably reduced concentration and overall gaze flow. These findings suggest that conceptual understanding of carbon neutrality including climate change and natural disaster significantly influences interest in and engagement with visual materials.

Analysis of Overseas Data Management Systems for High Level Radioactive Waste Disposal (고준위방사성폐기물 처분 관련 자료 관리 해외사례 분석)

  • MinJeong Kim;SunJu Park;HyeRim Kim;WoonSang Yoon;JungHoon Park;JeongHwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.323-334
    • /
    • 2023
  • The vast volumes of data that are generated during site characterization and associated research for the disposal of high-level radioactive waste require effective data management to properly chronicle and archive this information. The Swedish Nuclear Fuel and Waste Management Company, SKB, established the SICADA database for site selection, evaluation, analysis, and modeling. The German Federal Company for Radioactive Waste Disposal, BGE, established ArbeitsDB, a database and document management system, and the ELO data system to manage data collected according to the Repository Site Selection Act. The U.K. Nuclear Waste Services established the Data Management System to manage any research and survey data pertaining to nuclear waste storage and disposal. The U.S. Department of Energy and Office of Civilian Radioactive Waste Management established the Technical Data Management System for data management and subsequent licensing procedures during site characterization surveys. The presented cases undertaken by these national agencies highlight the importance of data quality management and the scalability of data utilization to ensure effective data management. Korea should also pursue the establishment of both a data management concept for radioactive waste disposal that considers data quality management and scalability from a long-term perspective and an associated data management system.