• Title/Summary/Keyword: Concentric equivalent wind speed

Search Result 1, Processing Time 0.017 seconds

Accounting for the Atmospheric Stability in Wind Resource Variations and Its Impacts on the Power Generation by Concentric Equivalent Wind Speed (동심원 등가풍속을 이용한 대기안정도에 따른 풍력자원 변화에 관한 연구)

  • Ryu, Geon-Hwa;Kim, Dong-Hyeok;Lee, Hwa-Woon;Park, Soon-Young;Yoo, Jung-Woo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.49-61
    • /
    • 2016
  • The power production using hub height wind speed tends to be overestimated than actual power production. It is because the hub height wind speed cannot represent vertical wind shear and blade tip loss that aerodynamics characteristic on the wind turbine. The commercial CFD model WindSim is used to compare and analyze each power production. A classification of atmospheric stability is accomplished by Monin-Obukhov length. The concentric wind speed constantly represents low value than horizontal equivalent wind speed or hub height wind speed, and also relevant to power production. The difference between hub height wind speed and concentric equivalent wind speed is higher in nighttime than daytime. Under the strongly convective state, power production is lower than under the stable state, especially using the concentric equivalent wind speed. Using the concentric equivalent wind speed considering vertical wind shear and blade tip loss is well estimated to decide suitable area for constructing wind farm.