• Title/Summary/Keyword: Concentric Burner

Search Result 14, Processing Time 0.03 seconds

Characteristics of Premixed Flames in a Double Concentric Burner (이중 동축류 버너에서의 예혼합화염 특성에 관한 연구)

  • Gwon, Seong-Jun;Cha, Min-Seok;Choe, Man-Su;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1662-1669
    • /
    • 2000
  • Various flame types are observed in a double concentric burner by varying equivalence ratio and flow rates in each tube. Observed flame types include bunsen-type flame, ring-shaped flame, outer lifted flame, inner lifted flame, and oscillatory lifted flame, The doman of existence of various flames is mapped with equivalence ratio and annular jet velocity. Each flame is investigated through direct photography and OH PLIF. As central air velocity increase, the blowout region is diminished and lifted oscillating flames are observed. Inner lifted flames are observed from bunsen flames or rich shaped flames by increasing central air velocity. For inner lifted flames, annular jet velocity, at flame liftoff decreases with increasing central air jet velocity. Axial velocity profile and temperature fie이 using LDV and CRS, respectively, for a typical inner lifted flame are also measured through which the role of tribrachial flame for stabilization in emphasized.

An Experimental Study on Liftoff and Reattachment Characteristics in Concentric Burner (프로판 동축류 확산 화염에서 화염 부상과 재부착에 관한 실험적 연구)

  • Park, S.H.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.119-124
    • /
    • 2001
  • Propane coflow diffusion flames have been experimentally studied to investigate the liftoff and reattachment characteristics. Flame properties such as velocity and density distribution were measured by LDV and shadowgraphy, respectively. It is shown that as the velocity of coflowing air increases, liftoff velocity decreases nonlinearly in turbulent jets and linearly in laminar jets, while reattachment velocity decreases nonlinearly. Meanwhile, as inner nozzle tip thickness increases, liftoff velocity increases with the reattachment velocity nearly unchanged. Liftoff phenomena in these flames can be categorized into three classes as a function of coflow velocity, such as laminar liftoff, turbulent liftoff, and transient liftoff.

  • PDF

Characteristics of Partially Premixed Flames in Double Concentric Burner (이중 동축류 버너에서 부분예혼합화염의 특성에 관한 연구)

  • Kwon, S.J.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.131-138
    • /
    • 1998
  • Flame characteristics in a double concentric burner has been studied experimentally. Air is supplied through a central nozzle, methane/air premixture is supplied in a inner annular part, and coflowing shield air is supplied to minimize outside disturbances. Depending on flow rate and concentration, various flame shapes can be observed. As the flow rate difference between central air jet and annular premixed jet is varied, several distinctive flames are observed. Conditions of partially premixed flames are further investigated; nozzle attached rich premixed flame, inner lifted flame, and outer lifted flame. Using the Abel transformation of digitized images of flames, cross- sectional images of flames can be obtained, from which overall structure of flames can be identified. PLIF measurement of OR radical was also conducted. OR radicals were mainly distributed in diffusion flame region. From the difference of OR distribution between nozzle attached and lifted flames, similarity of OR distribution between tribrachial flame and lifted flames in this study are observed.

  • PDF

Stability of premixed double concentric jets flame with a recirculation zone (재순환역을 수반하는 동축분류예혼합화염에 관한 연구)

  • 이등헌일;송규근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.145-153
    • /
    • 1987
  • Stability limits of a double concentric jets flame and the structure of recirculation zone formed behind a thick burner rim were investigated. To control the flame stability, swirled secondary air flow ranging 0.13-0.71 of swirl number, and air, fuel, and mixture gas injection from an injection coaxial slit set on burner rim were examined. Flame stability limits, flame shapes, lengths of recirculation zone, temperature distributions, residence times, air ratios in the recirculation zone were measured. The following results were obtained. (1) Lean limits were considerably widened by a strong swirl because the recirculation zone was enlarged. (2) At fuel injection as well as mixture injection, lean limits were also extended. But, air injection had no effect on stability limits. (3) Injected gas seems to diffuse into the recirculation zone through its outer boundary surrounded the secondary air. Therefore, chemical structure in the recirculation zone with air injection coincides with that without injection. (4) Injection position had no effect on flame stability limits.

Core design study of the Wielenga Innovation Static Salt Reactor (WISSR)

  • T. Wielenga;W.S. Yang;I. Khaleb
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.922-932
    • /
    • 2024
  • This paper presents the design features and preliminary design analysis results of the Wielenga Innovation Static Salt Reactor (WISSR). The WISSR incorporates features that make it both flexible and inherently safe. It is based on innovative technology that controls a nuclear reactor by moving molten salt fuel into or out of the core. The reactor is a low-pressure, fast spectrum transuranic (TRU) burner reactor. Inherent shutdown is achieved by a large negative reactivity feedback of the liquid fuel and by the expansion of fuel out of the core. The core is made of concentric, thin annular fuel chambers containing molten fuel salt. A molten salt coolant passes between the concentric fuel chambers to cool the core. The core has both fixed and variable volume fuel chambers. Pressure, applied by helium gas to fuel reservoirs below the core, pushes fuel out of a reservoir and up into a set of variable volume chambers. A control system monitors the density and temperature of the fuel throughout the core. Using NaCl-(TRU,U)Cl3 fuel and NaCl-KCl-MgCl2 coolant, a road-transportable compact WISSR core design was developed at a power level of 1250 MWt. Preliminary neutronics and thermal-hydraulics analyses demonstrate the technical feasibility of WISSR.

Control the Blow-off Characteristics of Lean Premixed Flames Utilizing a Stratified Flame Concept (성층화된 화염을 이용한 희박 예혼합화염의 날림 특성 제어)

  • Lee, Wonnam;Ahn, Taekook;Nam, Younwoo
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.11-20
    • /
    • 2012
  • The Blow-off characteristics of LPG/air lean pre-mixed flames were experimentally investigated using a double and a multiple concentric coflow burners. Experiments were conducted to understand the effects of recirculation motion, thermal interaction between flames, and stratified flame configuration. Here, the stratified premixed flame is a "new concept" of a flame that sequentially contains fuel rich, stoichiometric, and fuel lean reaction zones in a flame. The blow-off from a lean premixed flame was significantly suppressed with recirculation motion. The recirculation motion by itself, however, was not sufficient to prevent the blow-off when the equivalence ratio became low. The existence of a inner premixed flame could also help to prevent the blow-off of lean premixed flame; however, the blow-off suppression effect was rather diminished by weakened recirculation motion with the presence of inner flame. The inner flame could be separated from an outer flame on a multiple concentric coflow burner, causing recirculation motion as well as thermal interaction between flames to become effective; therefore, the blow-off was further suppressed. The lean premixed flame could be stabilized with a fuel rich premixed flames that was produced with the supply of fuel through an inner nozzle. The penetration of lean premixed gas from outside into the fuel stream produced a lifted rich premixed flame. Chemiluminescence images of OH, CH, and $C_2$ radicals confirmed the structure of a stratified premixed flame. The stable premixed flames could be obtained at the very fuel lean condition by applying the stratified premixed flame concept.

Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame (불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화)

  • Ahn, Taekook;Lee, Wonnam;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.

Synthesis and Process Development of Ultrafine Ti Powder by Sodium Flame Encapsulation Method (Sodium Flame Encapsulation 방법에 의한 초미립 Ti 분말 합성 및 공정개발)

  • Maeng, Deok-Yeong;Lee, Chang-Gyu;Kim, Heung-Hui
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.391-397
    • /
    • 2002
  • Synthesis and process development of nano-size Ti powder by SFE(Sodium/halide Flame Encapsulation) method were investigated. Four concentric coflow burner was used and its flame configuration was $TiCl_4/Ar/Na/Ar$ in order from the center. Flame has been controlled by the various processing parameters such as temperature of burner and flow rates of both $TiCl_4$(g) precursor and Na(g). It was found that yellow-colored flame was shown in the flow rates of 70cc/min of $TiCl_4$(g) precursor and 2 $\ell$ /min of Na(g) which were regarded as optimum flame condition. The powders encapsuled by NaCl were produced having the average powder size of 250nm. The results of X-ray diffraction showed that powders from the optimized condition consisted of pure Ti and NaCl. TEM analysis confirmed that the several Ti powders of 20-100nm were encapsulated with NaCl. After removing sodium chloride by heat treatment, the spherical Ti powders with the size range of 80 to 150nm were obtained.

Soot Formation Characteristics of Concentric Diffusion Flames with Mixture Fuels (이중동축류 화염을 이용한 혼합연료의 매연생성 특성에 관한 연구)

  • Lee, Won-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.123-128
    • /
    • 2002
  • The synergistic effect of ethylene/propane and ethylene/methane mixtures on soot formation is studied experimentally with a concentric co-flow burner. The integrated soot volume fractions, laser light scattering signal and PAH concentrations are measured for different fuel supply configurations. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the composition of mixture but also by the way of mixing. Comparing to the homogeneously mixed ethylene/propane case, the increase of soot formation is observed when propane is supplied through the inner nozzle, while the decrease is observed when propane is supplied through the outer nozzle. However, the measured PAH concentration distributions are inconsistent with the current view of the synergistic effect of ethylene./propane mixture on soot formation. Virtually no synergistic effect is observed in ethylene-methane flames regardless of the fuel supply configuration, which suggests the important role of $C_3$ species produced during the propane pyrolysis process for the synergistic effect.

  • PDF

Soot and PAH Formation Characteristic of Concentric Co-Flow Diffusion Flames (이중동축류 확산화염에서의 매연 및 PAH 생성 특성)

  • Lee, Won-Nam;Nam, Youn-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.178-185
    • /
    • 2005
  • The synergistic effect of ethylene/propane mixture on soot formation is studied experimentally using a concentric co-flow diffusion burner, which provides the stratified fuel mixture. The soot volume fraction, soot particle diameter, number density and PAH concentrations are measured with various fuel supply configurations and compared to the homogeneously mixed case. When propane is supplied through the inner nozzle, an increase of soot formation is observed. However, when propane is supplied through the outer nozzle, a decrease is observed. The reaction path of PAH's formed from the pyrolysis process of propane is likely to be responsible to the observed differences. When propane is supplied through the outer nozzle, PAH's are formed in the relatively near oxidation region and exposed to the oxidization environment; on the other hand, when propane is supplied through the inner nozzle, PAH's are not likely to be oxidized and thus get involved in soot formation process. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the com position of the mixture but also by the way of mixing.