• Title/Summary/Keyword: Concentration efficiency

Search Result 4,544, Processing Time 0.028 seconds

Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace (순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구)

  • Choi, Wook;Jo, Hang-Dae;Choi, Won-Kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.857-864
    • /
    • 2011
  • Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on $SO_2$ removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions represented by high concentrations of $CO_2$ and $SO_2$ formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, $CO_2$ concentration, $SO_2$ concentration, Ca/S ratio and humidity on $SO_2$ removal efficiency were investigated experimentally. $SO_2$ removal efficiency increased with reaction temperature up to 1,200 due to promoted calcination of limestone reagent particles. And $SO_2$ removal efficiency increased with $SO_2$ concentrations and the humidity of the bulk gas. The increase of $SO_2$ removal efficiency with $CO_2$ concentrations showed that $SO_2$ removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions. From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > $O_2$ concentration > reaction temperature > $SO_2$ concentration > $CO_2$ concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

Evaluation of Cell Viability and Delivery Efficiency in Electroporation System According to the Concentrations of Propidium Iodide and Yo-Pro-1 (전기천공시스템에서 Propidium Iodide와 Yo-Pro-1의 농도에 따른 세포 생존율과 전달효율 평가)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.898-906
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting fluorescent dye and using proper concentration of fluorescent dye to use evaluation of cell viability and fluorescent dye delivery efficiency. Propidium iodide and Yo-Pro-1 were used as fluorescent dyes. In the evaluation of cell viability and the efficiency of delivery using Propidium Iodide and Yo-Pro-1, the histogram of each fluorescent dye was different depending on the type of fluorescent dye and the concentration used. These results were related to the characteristics of the fluorescent dyes used. This was related to the properties of the fluorescent dyes used. From these results, it was found that the analytical results depending on the characteristics of the fluorescent dyes used in the cell analysis. The effect of the fluorescent dye on the cell was confirmed, but it was confirmed that it did not affect the analysis result. In addition, the influence of interference between fluorescent signals was confirmed when two or more kinds of fluorescent dyes were used for analysis. The higher the concentration of Yo-Pro-1 was, the larger the effect of interference was, and the concentration of Propidium Iodide did not affect the interference of fluorescence signal. This study confirmed that the evaluation of the cell viability and the evaluation of the delivery efficiency were influenced by the type and concentration of the fluorescent dyes and it was related to the characteristics of the fluorescent dyes. Based on the results, appropriate concentrations of fluorescent dyes suitable for evaluation of cell viability and delivery efficiency were suggested.

High Performance GaN-Based Light-Emitting Diodes by Increased Hole Concentration Via Graphene Oxide Sheets

  • Jeong, Hyun;Jeong, Seung Yol;Jeong, Hyun Joon;Park, Doo Jae;Kim, Yong Hwan;Kim, HyoJung;Lee, Geon-Woong;Jeong, Mun Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.244.1-244.1
    • /
    • 2013
  • The p-type GaN which act as a hole injection layer in GaN-based LEDs has fundamental problems. The first one arises from the difficulty in growing a highly doped p-GaN (with a carrier concentration exceeding ~1018 $cm^{-3}$). And the second one is the absence of appropriate metals or conducting oxides having a work function that is larger than that of p-type GaN (7.5 eV). Moreover, the LED efficiency is decreases gradually as the injection current increases (the so-called 'efficiency droop' phenomenon). The efficiency droop phenomenon in InGaN quantum wells (QWs) has been a large obstacle that has hindered high-efficiency operation at high current density. In this study, we introduce the new approaches to improve the light-output power of LEDs by using graphene oxide sheets. Graphene oxide has many functional groups such as the oxygen epoxide, the hydroxyl, and the carboxyl groups. Due to nature of such functional groups, graphene oxide possess a lot of hole carriers. If graphene oxide combine with LED top surface, graphene oxide may supply hole carriers to p-type GaN layer which has relatively low free carrier concentration less than electron concentration in n-type GaN layer. To prove the enhancement factor of graphene oxide coated LEDs, we have investigated electrical and optical properties by using ultra-violet photo-excited spectroscopy, confocal scanning electroluminescence microscopy.

  • PDF

Effects of MLSS Concentration and Influent C/N Ratio on the Nitrogen Removal Efficiency of Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactors (교차 간헐 포기식 부직포 여과막 생물반응조에서 MLSS 농도 및 유입수 C/N 비가 질소 제거효율에 미치는 영향)

  • Jung, Kyoung-Eun;Bae, Min-Su;Lee, Jong-Ho;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.501-510
    • /
    • 2006
  • To investigate the effects of MLSS concentration and influent C/N ratio on the nitrogen removal efficiency of alternately intermittently aerated nonwoven fabric filter bioreactors, the MLSS concentrations of the reactors were maintained at approximately 5,500 mg/L, 10,000 mg/L and 15,000 mg/L, and the influent TCOD/TKN ratio was decreased gradually from 5 to 2 by adding $NH_4Cl$. The influent was prepared by diluting a food waste leachate to a TCOD concentration of about 300 mg/L. The results of the experiment showed F/M ratios less than 0.112 g TCOD/g MLSS-day, average TCOD removal efficiencies of above 95%, and an average observed microbial yield coefficient of 0.283 g MLSS/g COD removed. The nitrification efficiencies were computed to be always better than 96% except one case where the nitrification efficiency was 90.5% when the MLSS concentration and the influent TCOD/TKN ratio was 5,500 mg/L and 2, respectively. The denitrification efficiency deteriorated as the influent TCOD/TKN ratio decreased. The average denitrification efficiency at the MLSS concentration of 10,000 mg/L was 10.7% better than that at the MLSS concentration of 5,500 mg/L, and the denitrification rate improved at a rate of 2.66 mg NL as the MLSS concentration increased by 1,000 mg/L. When the MLSS concentration was 15,000 mg/L, however, the average denitrification efficiency was merely 4.6% higher compared to when the MLSS concentration was 5,500 mg/L, and the denitrification rate increased at a rate of 0.75 mg N/L per 1,000 mg/L MLSS increase. Therefore, no strict proportional relationship was found between MLSS concentration and endogenous denitrification rate. The average alkalinity consumption rate was 3.36 mg alkalinity/mg T-N removed, which is similar to the theoretical value of 3.57 mg alkalinity/mg T-N removed, but the rate increased as the influent TCOD/TKN ratio decreased.

A Study on the Treatment of Phenol Wastewater in an Anaerobic Fluidized-Bed Reactor (혐기성 유동층 반응기에서 페놀 폐수 처리에 관한 연구)

  • 박동일;안재동;신승훈;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.96-103
    • /
    • 1996
  • The objectives of this study were to examine the biodegradation of phenol using the anaerobic fluidized bed reactor(AFBR). Mixed microorganisms were selected from the anaerobic digestion tank, and could be adapted to high concentration of phenol by increasing the phenol concentration 600-3600 mg/l step by step. The results were summarized as follows: 1. The average removal efficiency of phenol was 90%, decreased by increasing concentration of phenol, and then a shock range was 1200~2400 ppm. 2. The production rate of biogas in overall limits was proportional to the concentration of influent phenol. 3. At steady state, compositions of gases were $CH_4$ 55~60%, $C0_2$ 34~43%, respectively. These were similar to that of the theoretical estimates. 4. The production rates of biogas and methane per the molarity of phenol removed were linearly increased, 56.45 l gas/mol-phenol and 29.20 l $CH_4/mol$-phenol. Using this biogas, the recoverable energy was 269.1 kcal/mol phenol. It was 120.2 kcal/g-COD, transforming into the chemical oxygen demand. 5. The bulk of microorganisms existed in suspended section of fluidized bed with type of biofilm and its concentration was 340 mg/g-media. In conclusion, the anaerobic treatment of pure phenol was possible and its removal efficiency, introducing the AFBR, was successful. Also toxic organic compound such as phenol was biodegradable and was recoverable as resource of energy.

  • PDF

Effect of Inlet Temperature and CO2 Concentration in the Fresh Charge on Combustion in a Homogeneous Charge Compression Ignition Engine Fuelled with Dimethyl Ether (Dimethyl Ether 예혼합 압축 착화 엔진에서 흡기중 CO2 농도와 흡기온도 변화가 연소에 미치는 영향)

  • Bae, Choong-Sik;Jang, Jin-Young;Yeom, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.514-521
    • /
    • 2007
  • This study focused on the effects of the $CO_2$ gas concentration in fresh charge and induction air temperature on the combustion characteristics of homogeneous charge compression ignition with dimethyl ether (DME) fuel, which was injected at the intake port. Because of adding $CO_2$ in fresh charge, start of auto-ignition was retarded and bum duration became longer. Indicated combustion efficiency and exhaust gas emission were found to be worse due to the incomplete combustion. Partial burn was observed at the high concentration of $CO_2$ in fresh charge with low temperature of induction air. However, indicated thermal efficiency was improved due to increased expansion work by late ignition and prolonged bum duration. Start of auto-ignition timing was advanced with negligible change of burn duration, as induction air temperature increased. Burn duration was mainly affected by oxygen mole concentration in induction mixture. Bum duration was increased, as oxygen mole concentration was decreased.

Effects of Chloride Concentration on Zinc Electroplating (염화물의 농도가 전기아연도금에 미치는 영향)

  • Kim, Jae-Min;Lee, Jung-Hoon;Kim, Yong-Hwan;Kim, Young-Ha;Hong, Moon-Hi;Jeong, Hwon-Woo;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • The zinc electroplating with respect to the chloride concentration was investigated by X-ray diffraction(XRD), scanning electron microscope (SEM), and cathodic polarization measurement. The cathodic overpotential during electroplating was first decreased and then increased with increase of chloride concentration in electrolyte. The decreased cathodic overpotential leads to preferred orientation of (002) plane, high current efficiency and satisfactory zinc deposits. The increased cathodic overpotential causes random orientation, low current efficiency and edge burning. The cathodic overpotential was affected by chloride concentration in electrolyte, not by the kind of chloride, such as NaCl and KCl. An optimized chloride concentration was 3 M for zinc electroplating. Also, it is considered that NaCl can be a alternation for KCl as a main salt of zinc electroplating bath.

Phosphorus Removal from Synthetic Wastewater by Waste Oyster Shells (폐굴껍질에 의한 합성폐수 중의 인 제거)

  • 정경훈;정오진;최형일
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.43-49
    • /
    • 2000
  • A laboratory experiments were performed to investigate the effects of several factors on the phosphorus removal by waste oyster shells. The waste oyster shells used in this experiments were crushed particle, calcined particle and extracted solution. A higher efficiencies of phosphorus removal were observed, when a particle size of crushed and calcined particle were smaller. The effluent concentration of phosphorus was around 1.6mg/ι in continuous column experiment which packed with crushed particle of waste oyster shell at the influent concentration of PO4-P of 10 mg/ι. But the clogging of column occurred with increasing of throughput volume of influent. The efficiency of phosphorus removal increased with increasing of dosage amount of crushed, calcined particle and extracted solution. When the calcined particle which contained only about 1/10~1/100 of crushed particle was used, the efficiency of phosphorus removal was correspondingly equivalent to the removal efficiency obtained from crushed particle. The efficiency of phosphorus removal by calcined particle after 9 runs repeated use was decreased about 21.5% as that of the first run. The removal efficiency of 100% could have been achieved at the HRT of 18 hours during the continuous treatment of phosphorus by the solution extracted from calcined particle.

  • PDF

Tracer Experiment and Computational Fluid Dynamics Analysis for the Drainage Efficiency of a Reservoir (배수지의 배수효율분석을 위한 추적자실험 및 전산유체해석)

  • Cho, Jung-Yeon;Go, Sun-Ho;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.22-27
    • /
    • 2017
  • During the water treatment process for household water supply, a reservoir is the last place the water is stored before being supplied to users, and the duration of the water's stay is an important factor that affects its safety. This may cause the concentration of the residual chlorine disinfectant to increase and thus lower the water's quality. The concentration and discharge efficiency of residual chlorine must be verified and managed, because these are key factors that affect the reservoir's performance. Because the actual verification test for analyzing the efficiency of a reservoir and the disinfectant's dilution capacity is difficult, simulations are generally conducted using the computational fluid analysis method. However, the simulation results require validation with experiments. The error and drainage efficiency were analyzed in this study by comparing and analyzing the actual tracer test and simulation so that the actual test for a hexagonal drainage can be replaced by the computational fluid analysis method. Based on the results of the efficiency analysis, the hexagonal reservoir was found to be appropriate, and the simulation's reliability was verified with a tracer test.

Nitrogen Translocation and Dry Matter Accumulation of Direct Seeded Rice in No Tillage Rice-Vetch Cropping

  • Cho, Young-Son;Lee, Byung-Jin;Choe, Zhin-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.44-48
    • /
    • 1999
  • Uptake, assimilation and translocation of nitrogen and dry matter assimilation and translocation in ten rice cultivars were observed in no-till direct-sown rice-vetch cropping system. There was a large degree of variation in N-uptake, grain yield, nitrogen translocation efficiency and dry matter assimilation and translocation in tested rice cultivars. Forty kg N/ha base, as compound fertilizer (21-17-21% of N-P-K) three weeks after sowing and 30 kg N/ha top-dressed at panicle initiation stage as in the form of (NH$_4$)$_2$$CO_2$ was applied. ‘Newbounet’, ‘Daesanbyeo’, and ‘Hwayeongbyeo’ showed higher translocation efficiency. The contribution of pre-heading dry matter assimilates to grain ranged from 33% to 99% of dry grain weight. Dry matter of ‘Calrose 76’ was lower than Newbounet but N content was higher in Calrose 76 than Newbonnet. By maturity, N content in vegetative parts declined considerably more than dry matter, vegetative and reproductive parts, N translocation efficiency, and N harvest index. Nitrogen translocation efficiency was greater in ‘Nonganbyeo’, Daesanbyeo, and Newbounet. Grain N concentration was positively correlated with N concentration or N content of the vegetative parts at heading in Nonganbyeo, ‘Dasanbyeo’, ‘Dongjinbyeo’, and Newbonnet. These results indicated that the greater amount of dry matter and N accumulated before heading stage, the higher translocation rates of dry matter to grain and the greater net losses at maturity.

  • PDF