PM2.5 concentration in Seoul could be predicted by deep neural network model. In this paper, the contribution of input factors to the model's prediction results is analyzed using the LRP(Layer-wise Relevance Propagation) technique. LRP analysis is performed by dividing the input data by time and PM concentration, respectively. As a result of the analysis by time, the contribution of the measurement factors is high in the forecast for the day, and those of the forecast factors are high in the forecast for the tomorrow and the day after tomorrow. In the case of the PM concentration analysis, the contribution of the weather factors is high in the low-concentration pattern, and that of the air quality factors is high in the high-concentration pattern. In addition, the date and the temperature factors contribute significantly regardless of time and concentration.
Park, Jin Hyeok;Kang, Seok Hwan;Lee, Byung Mun;Kang, Un Gu;Lee, Young Ho
한국컴퓨터정보학회논문지
/
제23권11호
/
pp.129-135
/
2018
In this study, we designed a model that can measure the level of user's concentration by measuring and analyzing EEG data of the subjects who are performing Continuous Performance Test based on visual stimulus. This study focused on alpha and beta waves, which are closely related to concentration in various brain waves. There are a lot of research and services to enhance not only concentration but also brain activity. However, there are formidable barriers to ordinary people for using routinely because of high cost and complex procedures. Therefore, this study designed the model using the portable EEG measurement device with reasonable cost and Visual Continuous Performance Test which we developed as a simplified version of the existing CPT. This study aims to measure the concentration level of the subject objectively through simple and affordable way, EEG analysis. Concentration is also closely related to various brain diseases such as dementia, depression, and ADHD. Therefore, we believe that our proposed model can be useful not only for improving concentration but also brain disease prediction and monitoring research. In addition, the combination of this model and the Brain Computer Interface technology can create greater synergy in various fields.
In this study, we developed a $PM_{10}$ forecasting model using DNN and Membership Function, and improved the forecasting performance. The model predicts the $PM_{10}$ concentrations of the next 3 days in the Seoul area by using the weather and air quality observation data and forecast data. The best model(RM14)'s accuracy (82%, 76%, 69%) and false alarm rate(FAR:14%,33%,44%) are good. Probability of detection (POD: 79%, 50%, 53%), however, are not good performance. These are due to the lack of training data for high concentration $PM_{10}$ compared to low concentration. In addition, the model dose not reflect seasonal factors closely related to the generation of high concentration $PM_{10}$. To improve this, we propose Julian date membership function as inputs of the $PM_{10}$ forecasting model. The function express a given date in 12 factors to reflect seasonal characteristics closely related to high concentration $PM_{10}$. As a result, the accuracy (79%, 70%, 66%) and FAR (24%, 48%, 46%) are slightly reduced in performance, but the POD (79%, 75%, 71%) are up to 25% improved compared with those of the RM14 model. Hence, this shows that the proposed Julian forecast model is effective for high concentration $PM_{10}$ forecasts.
A new neural network model has been developed to predict short-term air pollution concentration. In addition, a multiple regression model widely used in statistical analysis was tested. These models were applied for prediction of daily maximum ozone concentration in Seoul during the summer season of 1991. The time periods between May and September 1989 and 1990 were utilized to train set of learning patterns in neural network model, and to estimate multiple regression model. To evaluate the results of the different models, several Performance indices were used. The results indicated that the multiple regression model tended to underpredict the daily maximum ozone concentration with small r$^{2}$(0.38). Also, large errors were found in this model; 21.1 ppb for RMSE, 0.324 for NMSE, and -0.164 for MRE. On the other hand, the results obtained from the neural network model were very promising. Thus, we can know that this model has a prominent efficiency in the adaptive control for the non-linear multi- variable systems such as photochemical oxidants. Also, when the recent new information was added in the neural network model, prediction accuracy was increased. From the new model, the values of RMSE, NMSE and r$^{2}$ were 13.2ppb, 0.089, 0.003 and 0.55 respectively.
본 연구에서는 붕산주입 및 회석운전동안에 노심의 붕산농도를 변화시키기 위한 보충수 유량을 예측하고 화학 및 체적제어계통을 포함한 원자로 냉각재계통내에 있는 각종 계통에서 붕산농도 거동분석을 위한 종합적 붕산주입 및 희석모델(INBAD)이 제안되었다. 이 모델은 기존의 노심코드와 새로 개발된 붕산주입 및 희석모델로 구성되어 있으며 붕산주입 및 희석모델은 단일 cell 모델 및 다중 cell모델을 이용하여 본 연구목적에 맞게 개발되었다. 또한, 본 모델에서는 보다 실제적인 붕산농도 거동분석을 위하여 가변적 가압기 가열기 출력 및 선택적인 보충수 운전형태 (직접주입 또는 간접주입)가 모사되었다. 이 모델의 유용성을 증명하기 위하여 영광 3,4호기 설계자료를 이용하여 각종 계통에서 직접주입 및 간접주입운전에 대한 붕산농도 거동분석을 수행하였고, 노심의 붕산농도에 대한 가압기 가열기의 영향을 검토하였다. 그 결과 본 모델은 붕산주입 및 희석운전시에 각종 계통에서 붕산농도 변화를 정확히 예측할 수 있음을 보여 주었다.
In this paper, the importance of input factors of a DNN (Deep Neural Network) PM2.5 forecasting model using LRP(Layer-wise Relevance Propagation) is analyzed, and forecasting performance is improved. Input factor importance analysis is performed by dividing the learning data into time and PM2.5 concentration. As a result, in the low concentration patterns, the importance of weather factors such as temperature, atmospheric pressure, and solar radiation is high, and in the high concentration patterns, the importance of air quality factors such as PM2.5, CO, and NO2 is high. As a result of analysis by time, the importance of the measurement factors is high in the case of the forecast for the day, and the importance of the forecast factors increases in the forecast for tomorrow and the day after tomorrow. In addition, date, temperature, humidity, and atmospheric pressure all show high importance regardless of time and concentration. Based on the importance of these factors, the LRP_DNN prediction model is developed. As a result, the ACC(accuracy) and POD(probability of detection) are improved by up to 5%, and the FAR(false alarm rate) is improved by up to 9% compared to the previous DNN model.
A local wind model and a three dimensional local environmental model including advection, diffusion, deposition. and photochemical reactions were performed at Gwangyang Bay, Korea, to predict air flow and air pollutants concentrations. A large grid was used, and nesting method was employed for small grid calculation. From the meterological module simulation, we were able to reproduce local wind characteristics such as sea/land winds and mountain/valley winds simulation at Gwangyang Bay. In addition, the concentration module showed high concentration regions at Yosu industrial complex, Gwangyang steel company. and Container anchor. It was also seen that air pollutants were dispersed by sea/land winds. A comparison between the measurement and the prediction of sulfur dioxide and nitric oxide, which are relatively low-reacted pollutants, was performed. However, the measured nitrogen dioxide and ozone concentrations were higher than the simulated ones. Particularly, ozone concentration between 8 a..m. and 8 p.m. agreed well, but the measured ozone during the rest of time were generally higher.
In vivo activity of recombinant human erythropoietin (rh-EPO) has been examined using polycythemic model in mice and acute hemorrhage model in rats. The number of reticulocytes in blood stream was increased after a single injection of rh-EPO depending on the dosage of rh-EPO in polycythemy model. It seemed that optimal dose of rh-EPO for polycythemic mice was around 1-10 U/kg. Rh-EPO also showed the effectiveness for increase of reticulocyte numbers both in male and female rats after bleeding. The number of reticulocytes and the change of hemoglobin concentration in the blood stream of normal rats has been examined after injection of rh-EPO. The maximum value of reticulocyte was observed on the 6th day of the injection in these normal rats. In addition, the increase of reticulocyte and the concentration of hemoglobin were dependent on the dosage of rh-EPO. The increase of hemoglobin concentration was continued to the 9th day after injection. In this study, the efficacy of rh-EPO was confirmed in both mice and rats.
Although the research of immune-based anomaly detection technology has made some progress, there are still some defects which have not been solved, such as the loophole problem which leads to low detection rate and high false alarm rate, the exponential relationship between training cost of mature detectors and size of self-antigens. This paper proposed an intrusion detection method based on changes of antibody concentration in immune response to improve and solve existing problems of immune based anomaly detection technology. The method introduces blood relative and blood family to classify antibodies and antigens and simulate correlations between antibodies and antigens. Then, the method establishes dynamic evolution models of antigens and antibodies in intrusion detection. In addition, the method determines concentration changes of antibodies in the immune system drawing the experience of cloud model, and divides the risk levels to guide immune responses. Experimental results show that the method has better detection performance and adaptability than traditional methods.
CALPUFF is one of the recommended air pollution models by EPA with AERMOD. It has been used to simulate the ambient concentration of critical air pollutants as well as non-critical pollutants such as persistent organic matters and the organic materials causing odor. In this model, the air pollutants go through dispersion, transportation, chemical reaction, and deposition process. These mechanisms are significantly influenced by meteorological condition. This study produces the meteorological field in three different methods for the simulation of $SO_2$ using CALPUFF: 1) CALMET model by using both ground-level and aerological observation, 2) CALMET model by using MM5 results with NCEP/NCAR reanalyzed data, 3) CALMET model by using MM5 results in which FDDA is applied with NCEP/NCAR reanalyzed data as well as the meteorological data of Korea Meteorological Administration. As a result of CALPUFF model, the resolved concentration of $SO_2$ showed different behaviors in three cases. For the first case, the fluctuation of SO2 concentration was frequently observed while the fluctuation is reduced in the second and third cases. In addition, the maximum concentration of $SO_2$ in the first case was about 2~3 times higher than the second case, and about 4~6 times higher than the third case. These results can be caused by the accuracy of the resolved meteorological field. It is inferred that the meteorological field of the first case could be less accurate than other two cases. These results show that the use of correct meteorological data can improve the result of dispersion model. Moreover, the contribution of various sources such as point, line, and area sources on the ambient concentration of air pollutant can be roughly estimated from the sensitivity analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.