• Title/Summary/Keyword: Concentration Gradient

Search Result 583, Processing Time 0.024 seconds

Enrichment of valuable elements from vanadium slag using superconducting HGMS technology

  • He, Sai;Yang, Chang-qiao;Li, Su-qin;Zhang, Chang-quan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • Vanadium slags is a kind of vanadiferous solid waste from steelmaking process. It not only occupies land, pollutes environment, but also leads to waste of resources. Based on the difference of magnetic susceptibility of different particles caused by their chemical and physical properties from vanadium slag, a new technology, superconducting high gradient magnetic separation was investigated for separation and extraction of valuable substances from vanadium slag. The magnetic concentrate was obtained under optimal parameters, i.e., a particle size -200 mesh, a magnetic flux density of 0.8 T, a slurry concentration of 5 g/L, an amount of steel wools of 25 g and a slurry flow velocity of 2 L/min. The content of $Fe_2O_3$ in concentrate could be increased from 39.6% to 55.0% and $V_2O_5$ from 2.5% to 4.0%, respectively. The recovery rate is up to 42.9%, and the vanadium slag has been effectively reused.

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

Radial Distribution Proximate Composition and Minerals within Naked Barley Kernel (쌀보리 입자내의 일반성분 및 무기질의 분포)

  • Park, Sung-Hee;Kim, Kwan;Kim, Sung-Kon;Park, Yang-Kyun
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.441-443
    • /
    • 1989
  • The major kernels$(7{\sim}10\;mesh)$ of naked barley were pearled to give an average yield for each pearling of about 5% flour, with 70% of the naked barley left as residual kernel. The contents of protein, fat and ash were in the highest in the fraction of 1,2 and 3, respectively. These fractions contained 1, 4 times of protein, 3.16 times of fat and 3.08 times of ash more than those values of original kernel. Residual kernels contained 62% of protein, 38% of fat and 35% of ash in the original kernel. Among minerals, the content of Ca, Na, Fe and Mn were in the highest in fraction 1 ; P, Mg and Zn in fraction 2 ; and K and Cu in fraction 3. Concentrations of these minerals were the lowest in the residual kernel. Magnesium showed the deepest concentration gradient, while iron was evenly distributed within the kernel.

  • PDF

Investigation of the pyrolysis of GaN OMVPE precursors by Raman spectroscopy (Raman 분광법에 의한 GaN OMVPE 전구체들의 열분해에 관한 연구)

  • 이순애;김유택;신무환;신건철;박진호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • The temperature profiles of gas phase and the concentration profiles of GaN precursors in an inverted OMVPE reactor have been carried out by in-situ Raman spectroscopy. Pure rotational Raman scattering from the carrier gas (rd) was used to determine the temperature profiles in the reactor, and a large temperature gradient perpendicular the susceptor surface was observed. The homogeneous gas phase decompositions of the OMVPE precursors were investigated by the vibrational Raman spectra, and it was found that the pyrolyses of $NH_3$ and TMGa begin above 800 K and 650 K, respectively, but a noticeable amount of precursors remain undecomposed even in the region very close to the susceptor.

  • PDF

Influence of Applied Electric Field on Low Temperature Degradation of Y-TZP (인가 전압이 Y-TZP의 저온열화에 미치는 영향)

  • 장주웅;이홍림;김대준;오남식;이득용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1254-1260
    • /
    • 1997
  • Influence of applied electric field on the low temperature degradation of 3 mol% YaO3 stabilized tetragonal zirconia polycrystals(3Y-TZP) was investigated using X-ray diffractometry of specimens aged under the dc field of 1.1 kV/mm in silicone oil both of 12$0^{\circ}C$-21$0^{\circ}C$. After the aging, the tetragonal to monoclinic phase transformation was observed only on the specimen surface of 3Y-TZP faced to the anode. This indicated that the surface was overcrowded with oxygen ions as a result of diffusion of oxygen vacancies toward the cathode-sided surface. To elucidate an influence of the applying time of the electric field on the extent of the degradation of 3Y-TZP in air, specimens were aged fore 0-2 hours under the electric field in the oil bath of 12$0^{\circ}C$ and then subsequently aged for 3h at 22$0^{\circ}C$ in air. The longer the specimens were aged under the field, the more extensive the transformation to the monoclinic phase was on the specimen surface faced to the cathode, probably originated from a high diffusion rate of oxygen ions due to a steep oxygen vacancy concentration gradient.

  • PDF

Studies on the Blood Anticoagulant Polysaccharide Isolated from Hot Water Extracts of Hizikia fusiforme (톳 열수추출물로부터 분리한 혈액 항응고성 다당류에 관한 연구)

  • 양한철;김경임;서혜덕;이현순;조홍연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1204-1210
    • /
    • 1998
  • This study was focused on the purification, characterization and promotion mode of an anticoagulant polysaccharide from Hizikia fusiforme. The anticoagulant crude polysaccharide(HF 0) was obtained by using hot water extraction at 100oC for 3 hrs after homogenizing desalted Hizikia fusiforme. The anticoagulant polysaccharide(HF 2 3 1a) was purified from the crude extract(HF 0) through stepwise gradient ethanol precipitation(HF 2), DEAE Toyopearl 650C(HF 2 3), Sephadex G 75(HF 2 3 1), Sepharose CL 6B(HF 2 3 1a) chromatography and HPLC to homogeneity. HF 2 3 1a was estimated at 5.3$\times$105 Da molecular weight and composed of fucose(51.92%), galactose(19.34%), mannose(13.92%), xylose (7.14%), arabinose(3.95%) and rhamnose(3.78%), and comprimised 29.7 % sulfate residue. The sulfated anticoagulant polysaccharide from HF 2 3 1a was proposed to inhibit via the intrinsic pathway and common pathway in the blood coagulation. The HF 2 3 1a exhibited the anticoagulant activity by activating an antithrombin III and the activity depended on the concentration of HF 2 3 1a. Acute toxicity of HF 2 in mice was not detected. Only 14 of 33 control mice(11.4%) that had taken saline survived for 30 min after injecting thrombin(100 NIH unit/ml).

  • PDF

Seasonal Variation in the Abundance of the Demersal Copepod Pseudodiaptomus sp. (Calanoida, Pseudodiaptomidae) in the Seomjin River Estuary, Southern Korea

  • Park Eun Ok;Suh Hae-Lip;Soh Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.367-373
    • /
    • 2005
  • We conducted a year-long survey in 2000 to examine seasonal fluctuations in the abundance of the demersal copepod Pseudodiaptomus sp., the dominant copepod in the Seomjin River estuary, where the spring tide strongly affects changes in salinity gradients. Pseudodiaptomus sp. was found throughout the year in the entire range of salinities measured, but most individuals appeared at oligohaline conditions below 5.0 psu, and less than $2\%$ were observed in polyhaline conditions above 18.0 psu. The peak abundance occurred during autumn in oligohaline waters, and the density was relatively low during the rainy season in summer. In spring and autumn, copepodites were most abundant in oligohaline waters, although they were also fairly abundant in mesohaline conditions $(5\~18\;psu)$. Females with egg sacs appeared in oligo- and mesohaline waters during spring and autumn but were seldom found in polyhaline conditions throughout the year. Our results indicate that, despite the strong physical influence of the tide, Pseudodiaptomus sp. can manipulate its position to remain at its preferred salinity. We also found that spawning mainly occurred in oligohaline waters twice a year.

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Reconstitution of Sarcoplasmic Reticulum-$Ca^{2+}$ Release Channels into Phospholipid Vesicles : Investigation of Conditions for Functional Reconstitution

  • Yang, In-Sik;Lee, Hee-Bong
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.129-137
    • /
    • 1995
  • The ryanodine-receptor $Ca^{2+}$ release channel protein in the sarcoplasmic reticulum membrane of rabbit skeletal muscle plays an important role in muscle exitation-contraction (E-C) coupling. Various types of detergents were tested, including Chaps, cholate, octylglucoside, Zwittergents, Mega-9, Lubrol PX, and Triton X-100 for solubilization of this protein. Among these, Chaps and Triton X-100 were found to optionally solubilize the channel complex. Optimum conditions for this solubilization were pH 7.4 with a salt concentration of 1 M. The addition of phospholipid in the solubilization step helped in stabilizing the protein. The purification of the receptor was performed using sucrose density gradient centrifugation. Various methods [dilution, freeze-thaw, adsorption (Biobeads), and dialysis] were investigated to incorporate the Chaps-solubilized and purified $Ca^{2+}$ release channel protein into liposomes made from different types of phospholipids. Of these, a combined method consisting of a dialysis, freeze-thaw and sonication steps yielded the best results. Reconstituted vesicles produced by this method with 95% phosphatidylcholine (from soybean extract) had good function.

  • PDF

Biofilms and their Activity in Granular Activated Carbons Established in a Drinking Water Treatment Plant (정수장 활성탄 여과지의 생물막과 그 활성도)

  • Lee, Ji-Young;Kim, Se-Jun;Chung, Ik-Sang;Joh, Gyeong-Je
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.661-674
    • /
    • 2010
  • Bacterial biomass and its activity were measured in two kinds of granular activated carbon (GAC), the experimental and existing biofiltration system in a drinking water plant. The bacterial biomass was around 210 to 250 nmol P/g WW with phospholipid concentration at acclimation of ozonation treatment. The phospholipid biomass shows more or less a declining gradient along filter depth and no clear seasonality in its values. On the other hand, the microbial activity of [$^3H$]-thymidine and [$^{14}C$]-acetate incorporation within cells increased significantly along the filter depth, showing the difference of three fold between the upper and bottom layer. These factors support the different microbial composition or metabolic activity along the depth of GAC column. Turnover rates, the rate of bacterial biomass and production of biofilm, ranged from 0.26 /hr to 0.37 /hr, indicating a highly rapid recovery itself at amature state. In the non-ozonation treatment, the bacterial biomass was lower than in the ozonation and biological activity also declined towards the filter depth. The biomass levels during cessation of ozonation in the existing GAC filters were 68% of the actively ozonated state.