• Title/Summary/Keyword: Concentration Efficiency

Search Result 4,561, Processing Time 0.038 seconds

Assessment of 1,4-Dioxane Removal in Polyester Wastewater by Activated Sludge and Its Microbial Property by 16S rDNA (폴리에스테르 중합폐수의 활성슬러지 공정에서의 1,4-다이옥산 제거 및 16S rDNA에 의한 미생물 군집특성 평가)

  • Han, Ji-Sun;So, Myung-Ho;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.393-400
    • /
    • 2008
  • 1,4-Dioxane($C_4H_8O_2$), which is used as a solvent stabilizer, could make harmful effects on ecosystem because of its higher solubility, toxicity and carcinogenic by US EPA. From 2011, its discharge limit to waterbody will be regulated at 5 mg/L by Ministry of Environment Republic of Korea. It was thus to investigate that the currently operating activated sludge in polyester manufacturing processes in Gumi can properly treat it to meet with the regulation standard. For that purpose, the removal rate of 1,4-dioxane and its microbial properties were assessed for a few companies(i.e. K, H and T). Its removal efficiency was the most highly recorded in H as 98% and then 77% for K, which met with the regulation standard. However, concentration of 1,4-dioxane of T was 23 mg/L in the effluent, which is more than the regulation standard. Aside from, microbial degradation test was done for 100 ppm of 1,4-dioxane in BSM (Basal salt medium) inoculated with each of activated sludge. After 7 days, 1,4-dioxane was completely removed in the test bottle inoculated with H sludge, 67% in T and 52% in K, which could confirm that the given activated sludge might have different biodegradability against the amount of 1,4-dioxane. Therefore, microbial diversity in each company was investigated by 16s rDNA cloning methods where a species, e.g. Methylibium petroleiphilum PM1, was the greatest observed from H and in lesser from K, but it was not detected from T. Methylibium petroleiphilum PM1 is known to efficiently degrade ether like methyl tertiary-butyl ether(MTBE). It is concluded that the activated sludge in H can be most effectively adopted for a biodegradation of 1,4-dioxane in the concern of industrial sector.

Degradation of Microcystin-LR, Taste and Odor, and Natural Organic Matter by UV-LED Based Advanced Oxidation Processes in Synthetic and Natural Water Source (UV-LED기반 고도산화공정을 이용한 수중 마이크로시스틴-LR, 이취미 물질, 자연유기물 분해)

  • Yang, Boram;Park, Jeong-Ann;Nam, Hye-Lim;Jung, Sung-Mok;Choi, Jae-Woo;Park, Hee-Deung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.246-254
    • /
    • 2017
  • Microcystin-LR (MC-LR) is one of most abundant microcystins, and is derived from blue-green algae bloom. Advanced oxidation processes (AOPs) are effective process when high concentrations of MC-LR are released into a drinking water treatment system from surface water. In particular, UV-based AOPs such as UV, $UV/H_2O_2$, $UV/O_3$ and $UV/TiO_2$ have been studied for the removal of MC-LR. In this study, UV-LED was applied for the degradation of MC-LR because UV lamps have demonstrated some weaknesses, such as frequent replacements; that generate mercury waste and high heat loss. Degradation efficiencies of the MC-LR (initial conc. = $100{\mu}g/L$) were 30% and 95.9% using LED-L (280 nm, $0.024mW/cm^2$) and LED-H (280 nm, $2.18mW/cm^2$), respectively. Aromatic compounds of natural organic matter changed to aliphatic compounds under the LED-H irradiation by LC-OCD analysis. For application to raw water, the Nak-dong River was sampled during summer when blue-green algae were heavy bloom in 2016. The concentration of extracellular and total MC-LR, geosmin and 2-MIB slightly decreased by increasing the LED-L irradiation; however, the removal of MC-LR by UV-LED (${\lambda}=280nm$) was insufficient. Thus, advanced UV-LED technology or the addition of oxidants with UV-LED is required to obtain better degradation efficiency of MC-LR.

Melting Characteristics for Radioactive Aluminum Wastes in Electric Arc Furnace (아크 용융로에서 방사성 알루미늄 폐기물의 용융특성)

  • Min, Byung-Youn;Song, Pyung-Seob;Ahn, Jun-Hyung;Choi, Wang-Kyu;Jung, Chong-Hun;Oh, Won-Zin;Kang, Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • The characteristics of the aluminum waste melting and the distribution of the radioactive nuclides have been investigated for the estimation on the volume reduction and the decontamination of the aluminum wastes from the decommissioning of the TRIGA MARK it and III research reactors at the Korea Atomic Energy Research Institute(KAERI). The aluminum wastes were melted with the use of the fluxes such as flux $A:NaCl-KCl-Na_3AlF_6$, flux B:NaCl-NaF-KF, flux $C:CaF_2$, and flux $D:LiF-KCl-BaCl_2$ in the DC graphite arc furnace. For the assessment of the distribution of the radioactive nuclides during the melting of the aluminum, the aluminum materials were contaminated by the surrogate nuclides such as cobalt(Co), cesium(Cs) and strontium(Sr). The fluidity of aluminum melt was increased with the addition of the fluxes, which has slight difference according to the type of fluxes. The formation of the slag during the aluminum melting added the flux type C and D was larger than that with the flux A and B. The rate of the slag formation linearly increased with increasing the flux concentration. The results of the XRD analysis showed that the surrogate nuclide was transferred to the slag, which can be easily separated from the melt and then they combined with aluminum oxide to form a more stable compound. The distribution ratio of cobalt in ingot to that in slag was more than 40% at all types of fluxes. Since vapor pressures of cesium and strontium were higher than those that of the host metals at the melting temperature, their removal efficiency from the ingot phase to the slag and the dust phase was by up to 98%.

  • PDF

A Study on the Behavior of Surface-Applied Urea with $^{15}N$ Isotope Dilution Technique in Paddy Soil (논토양에서 중질소(N-15)를 이용한 표면시용 요소로부터 유래하는 질소의 행동에 관한 연구)

  • Lee, Sang-Mo;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.277-286
    • /
    • 1994
  • The pot experiment using $^{15}N$ isotope dilution technique was carried out to calculate the balance of nitrogen of surface applied urea in the rice-soil system. The $^{15}N$ concentration was determined by stable isotope ratio mass spcetrometer (model: VG ISO-GAS MM622). In the pots with $^{15}N$ labeled urea application at the rates of 15 and 30 kg N/10a, the percentage of nitrogen derived from fertilizer (NDFF) in rice was higher at the rate of 30 kg N/10a (average 89%) than at the rate of 15 kg N/10a (average 64%). However, the recovery as percentage of fertilizer N by rice was higher at the rate of 15 kg N/10a (65.5%) than at the rate of 30 kg N/10a (54.2%). The percentage of the fertilizer N remained in extractable inorganic N form at the rates of 15 and 30 kg N/10a were $13.5%\;(NH_4-N\;5.53%,\;NO_3-N\;7.99%)$ and $16.5%\;(NH_4-N\;7.49%,\;NO_3-N\;8.98%)$ in unplanted soil, and $2.0%\;(NH_4-N\;0.63%,\;NO_3-N\;1.32%)$ and$2.3%\;(NH_4-N\;0.87%,\;NO_3-N\;1.40%)$ in soil planted to rice, respectively. The dominant form of inorganic-N in soil after harvest was $NO_3-N$ form rather than $NH_4-N$ form regardless of urea application rate or rice cultivation. The percentage of the fertilizer N remained in organic N form at the rates of 15 and 30 kg N/10a were 65.0 and 41.8% in unplanted soil, and 23.7 and 26.9% in soil planted to rice, respectively. In conclusion, the efficiency of surface-applied urea was greater at the rate 15 kg N/10a than at the rate of 30 kg N/10a.

  • PDF

Effect of Saekso 2 Corn Kernels and Cobs Extracts on Antioxidant Activity in Rats Fed High Fat-cholesterol Diet (옥수수 색소 2호 품종의 알곡과 속대 추출물을 첨가한 고지방-고콜레스테롤 식이가 흰쥐의 항산화 활성에 미치는 영향)

  • Lee, Ki Yeon;Kim, Jai Eun;Hong, Soo Young;Kim, Tae hee;Noh, Hee Sun;Kim, Si Chang;Park, Jong yeol;Ahn, Mun Seob;Kim, Hee Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.6
    • /
    • pp.399-405
    • /
    • 2016
  • The objective of this study was to determine the effect of sakso 2 corn kernels and cobs extracts on antioxidant activity in rats fed a high fat-cholesterol diet (HFC) for 2 weeks. 48 male Sprague-Dawley (4-weeks-old) were randomly divided into 6 groups: normal diet (N), HFC (C), HFC and 0.05% kernel extracts of Saekso 2 (T1), HFC and 0.25% kernel extracts of Saekso 2 (T2), HFC and 0.05% cob extracts of Saekso 2 (T3), HFC and 0.25% cob extracts of Saekso 2 (T4). The weight gain in all treatment groups were significantly lower and the food efficiency ratio (FER) in all treatment groups except T3 were lower than C group. Liver index (liver weight/100 g body weight) in N group and T2 were significantly lower than C group. The level of total cholesterol in plasma of N group and T2 were significantly lower than C group and HDL-cholesterol in plasma of N group and T2 were significantly lower than C group. Malondialdehyde (MDA) concentration of thiobarbituric acid reactive substances in N group, T3 and T4 were significantly lower than C group. Activity of catalase (CAT) in all treatment groups were lower than C group. These result suggest that saekso 2 corn kernels and cobs extracts may reduce oxidative damage through the activation of antioxidative defense systems in rats fed high fat-cholesterol diets.

Decomposition of odor using atmospheric-pressure plasma (플라즈마를 이용한 악취물질 분해 특성)

  • Kang, Seok-Won;Lee, Jae-Sik;Lee, Kang-San;Lim, Hee-Ah;Kim, Ji-Seong;Lee, Jeong-Dae;Park, Wol-Su;Park, Young-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.708-718
    • /
    • 2020
  • Offensive odor is recognized as a social environmental problem due to its olfactory effects. Ammonia(NH3), hydrogen sulfide(H2S) and benzene(C6H6) are produced from various petrochemical plants, public sewage treatment plants, public livestock wastes, and food waste disposal facilities in large quantities. Therefore efficient decomposition of offensive odor is needed. In this study, the removal efficiency of atmospheric-pressure plasma operating at an ambient condition was investigated by evaluating the concentrations at upflow and downflow between the plasma reactor. The decomposition of offensive odor using plasma is based on the mechanism of photochemical oxidation of offensive odor using free radical and ozone(O3) generated when discharging plasma, which enables the decomposition of offensive odor at ordinary temperature and has the advantage of no secondary pollutants. As a result, all three odor substances were completely decontaminated within 1 minute as soon as discharging the plasma up to 500 W. This result confirms that high concentration odors or mixed odor materials can be reduced using atmospheric-pressure plasma.

Feasibility Test of Biohydrogen Production from Food Waste (음식물쓰레기의 수소발효 타당성 평가)

  • Han, Sun-Kee;Kim, Sang-Hyoun;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.87-95
    • /
    • 2003
  • Although extensive studies were conduced on hydrogen fermentation of organic wastewaters, little is known about biohydrogen production from organic solid wastes. The leaching-bed reactor treating food waste by heat-shocked anaerobic sludge was, therefore, operated at D of 2.1, 3.6, 4.5 and $5.5d^{-1}$ to find optimal D for hydrogen production. Successful operation of a reactor can be accomplished when it is operated at proper dilution rate (D). Operation at high D leads to the washout of biomass in the reactor while operation at low D leads to product inhibition due to the accumulation of excess VFA. These appear to limit the production of hydrogen to reach a higher level. All the reactors showed that, on day 1-3, hydrogen production was dominant and VFA concentration was higher than ethanol. Butyrate and acetate were major components of VFAs over the whole operation, though lactate was very high on day 1-2. Compared with other D values, D of $4.5d^{-1}$, resulted in higher butyrate/acetae (B/A) ratios during the fermentation. The trend of B/A ratios was similar to the hydrogen production, suggesting that butyrate formation favored hydrogen production. Ethanol increased significantly from day 4 when hydrogen Production stopped. It indicated that heat-shocked sludge was able to induce a metabolic flow from hydrogen-and acid-producing pathway to solvent-producing pathway. Operation at D of $4.5d^{-1}$ led to higher fermentation efficiency (58%) than those (51.5, 55.3 and 53.7%) at 2.1, 3.6 and $5.5d^{-1}$. The COD removed was convened to hydrogen (10.1%), VFA (30.9%), and ethanol (17.0%).

  • PDF

Estimation of Terminal Sire Effect on Swine Growth and Meat Quality Traits (돼지 성장 및 육질 형질에 영향하는 종료웅돈의 효과)

  • Kim, H.S.;Kim, B.W.;Kim, H.Y.;Iim, H.T.;Yang, H.S.;Lee, J.I.;Joo, Y.K.;Do, C.H.;Joo, S.T.;Jeon, J.T.;Lee, J.G.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.

Effects of Liquid Culture of Coriolus Versicolor on Lipid Metabolism and Enzyme Activities in Rats Fed High Fat Diet (운지버섯 균사체 배양액이 고지방 식이를 급여한 흰쥐의 지질대사 및 효소활성에 미치는 영향)

  • 문상필;고진복
    • Journal of Nutrition and Health
    • /
    • v.37 no.2
    • /
    • pp.88-94
    • /
    • 2004
  • The effects of liquid culture of Coriolus versicolor on weight gain, food intakes, food efficiency ratios, serum and hepatic lipid concentrations, serum protein levels and serum enzyme activities, were studied in growing male rats. Sprague-Dawley rats were given four different types of diets for a succeeding period of 5 weeks, respectively: a normal diet group (7% corn oil), a high fat diet group (7% corn oil+15% lard), a 20% or 30% C. versicolor diet groups (high fat diet+20% or 30% C. versicolor in water) according to the levels of C. versicolor supplementation. The body weight gains of the rats fed the 30% C. versicolor diets were lower than those in the rats fed high fat diet. The epididymal fat pad weight of the rats fed high fat diet and 20% or 30% C. versicolor diets were significantly higher than that of the rats fed normal diet. The concentrations of triglyceride in the serum and the liver of the rats fed the 30% C. versicolor diets were more significantly decreased compared to rats on the high fat diet. The concentrations of total cholesterol in the serum and the liver of rats fed the high fat diet, 20% and 30% C. versicolor diets were similar to those of rats fed the normal diet. The HDL-cholesterol concentration and the HDL-cholesterol/total-cholesterol ratio of the rats fed 20% and 30% C. versicolor diets were significantly lower than those of the rats fed high fat diet. But the antherogenic index of the rats fed 20% or 30% C. versicolor diets were significantly higher than those of the rats fed high fat diet. There were no differences in the activities of glutamic oxaloacetic transaminase, glutamic pyruvic transaminase and alkaline phosphatase in the serum among the experimental groups. These results showed that the 30% C. versicolor diet feeding decreased the triglyceride in serum and liver of the rats.

The Effect of Grape Seed Oil, Perilla Oil, or Corn Oil-Containing Diet on Lipid Patterns in Rats and Fatty-Acid Composition in Their Liver Tissues (포도씨유, 들깨유 및 옥수수유의 급여가 흰쥐의 체내 지질패턴 및 간조직의 지방산 조성에 미치는 영향)

  • Kang Myung-Hwa;Park Won-Jong;Lee Ji-Hyun;Chung Hae-Kyung
    • Journal of Nutrition and Health
    • /
    • v.38 no.1
    • /
    • pp.3-10
    • /
    • 2005
  • The study analyzed the lipid patterns and fatty acid compositions of serum and liver tissues in groups of Sparague-Dawley rats. Some of the groups were fed with an basal diet, which contained com oil (C), grape seed oil (GSO), or perilla oil (P), and the others were fed with a high fat diet, which had cholesterol (1%) and lard (10%) mixed with corn oil (CHF), grape seed oil (GSHF), or perilla oil (PHF). The amount of dietary intake was higher for the basal diet groups than the high fat diet groups. And diet efficiency was significantly low in the group of rats fed with the basal diet mixed with perilla oil. From the analysis of the serum lipid patterns, a significant decrease in total lipid concentration was observed in the group of rats fed on the basal diet mixed with perilla oil and the high fat diet group. The levels of triglyceride and phospholipid were significantly low in the basal diet group when perilla oil or grape seed oil was involved. The ordinary diet groups showed significantly higher in HDL-C than the high fat diet groups. There was no significant difference among the basal diet groups, whether the diet was mixed with grape seed oil, perilla oil, or com oil. However, a significant increase in HDL-C was observed in the group of rats fed with the high fat diet containing perilla oil. For LDL-C, there was a significant difference between the high fat diet groups and the basal diet groups. LDL-C was especially low in the group of rats fed with the high fat diet to which perilla oil was added, and the grape seed-added high fat diet group showed a decreasing tendency in LDL-C. The content of total fat, total cholesterol, and triglyceride was the lowest in the group of rats fed with the perilla oil-containing basal diet, and this group was followed in order by the grape seed oil-containing diet group and com oil-containing diet group. In the analysis of the fatty-acid composition in liver tissue, the high fat diet groups showed an increase in saturated fatty acids and polyunsaturated fatty acids, but a decrease in mono unsaturated fatty acids when compared to the basal diet groups. The composition ratio of fatty acids varied according to which type of oil the diet contains. Our finding suggest that grape seed oil was an apparent diet effect on the fatty-acid composition.