• 제목/요약/키워드: Concentrated stormwater

검색결과 13건 처리시간 0.02초

우수저류시설의 배치방법에 따른 유출 및 침수피해 저감효과 분석 (Analyzing the Reduction of Runoff and Flood by Arrangements of Stormwater Storage Facilities)

  • 박창열;신상영;손은정
    • 한국물환경학회지
    • /
    • 제29권1호
    • /
    • pp.45-54
    • /
    • 2013
  • This study analyzes the reduction effects of runoff and flood damage through different arrangements of stormwater storage facilities. Three scenarios based on the spatial allocation of storage capacity are used: concentrated, decentralized and combinative. The characteristics of runoff and flood damage by scenario are compared. The XP-SWMM model is used for runoff simulation by the probable rainfall of return period. The result shows that the concentrated arrangement of storage facilities is most effective to reduce the amount of peak flow and to delay the time of peak flow. Yet, while the concentrated arrangement is most effective to reduce the inundation damage, it is not effective to reduce runoff volume. The decentralized arrangement is most effective to reduce runoff volume. The combinative arrangement is effective not only the runoff reduction but also the reduction of flood damage. The result indicates that the flood mitigation strategies against heavy rainfall need to consider decentralized on-site arrangement for the reduction of runoff volume along with concentrated off-site arrangement of storage facilities.

SWMM 모델을 이용한 우수 관리 홍수 탄력성 분석 (Analysis of Flood Resilience of the Stormwater Management Using SWMM Model)

  • Hwang, Soonho;Kim, Jaekyoung;Kang, Junsuk
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.126-126
    • /
    • 2021
  • Stormwater reduction plays an important role in the safety and resilience to flooding in urban areas. Due to rapid climate change, the world is experiencing abnormal climate phenomena, and sudden floods and concentrated torrential rains are frequently occurring in urban basins and the amount of outflow due to stormwater increases. In addition, the damage caused by urban flooding and inundation due to extreme rainfall exceeding the events that occurred in the past increases. To solve this problem, water supply, drainage, and water supply for sustainable urban development, the water management paradigm is shifting from sewage maintenance to water circulation and water-sensitive cities. So, in this study, The purpose of this study is to examine measures to increase the resilience of urban ecosystem systems for urban excellence reduction by analyzing the effects of green infra structures and LID techniques and evaluating changes in resilience. In this study, for simulating and analysis of runoff for various stormwater patterns and LID applications, Storm Water Management Model (SWMM) was used.

  • PDF

집중호우 후 도시 자연형하천의 사주변화 파악 (Identification of Urban Stream Sandbar Change After Concentrated Storm during Summer)

  • 김재철;이상화;신동훈;이규석
    • 한국환경복원기술학회지
    • /
    • 제9권6호
    • /
    • pp.162-167
    • /
    • 2006
  • The urban stream includes the channel and sandbars. The sandbar plays a key role in the riparian ecosystem. For birds and insects the sandbar offers a small strip of habitat and fish and other fauna feed in the boundary of sandbar where eddies occur. So, it is important habitat and source for the flow of energy, matter and organisms through the landscape and act as ecotone between the terrestrial and stream corridors. However, the sandbar changes continuously by the natural process. Thus, it is necessary to measure the shape and area of the sandbar accurately for the efficient urban stream management for the amenity of urban residents and stream protection. The study site is Yangjae Stream where the first natural-style urban stream restoration projected was impelemented by the support of Ministry of Education in Korea. The measurement was taken by the beacon Differential Global Positioning System (DGPS) and the data were stored and analyzed using ArcView Geographic Information System (GIS) program. Therefore, the purpose of this study is to measure the change of sandbars in the urban stream after concentrated stormwater during summer.

우수관망 해석모형과 지표수 침수해석 모형의 연계 적용 (Integrated Application of Stormwater Network Analysis Model and Surfacewater Inundation Analysis Model)

  • 신은택;이상은;엄태수;송창근
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.78-83
    • /
    • 2018
  • Recently, due to the rapid industrialization and urbanization, a great number of infrastructure and population were concentrated in urban areas. These changes have resulted in unprecedent runoff characteristics in urban basins, and the increase in impermeable areas leads to the growth of the runoff and the peak flow rate. Although many cities have made a lot of efforts to check and expand the stormwater network, the flash flood or the local torrential rain caused a growing number of casualty and property damage. This study analyzed the stormwater passage rate in a target area using SWMM. By incorporating the flow quantity surpassing the storm sewer capacity, a 2D inland flooding analysis model was applied to route the inundated area and velocity.

효율적 빗물관리를 위한 하수도 요금체계 개편 방안 (The improvement of sewerage fee imposition system for efficient rainwater management)

  • 박규홍;강병준;박주양;박완규;김성태
    • 상하수도학회지
    • /
    • 제28권5호
    • /
    • pp.517-527
    • /
    • 2014
  • As sewer flooding frequents due to localized and concentrated stormwater and increased non-permeable surface area after urbanization, building cities with sound water recycle and accordingly efficient management of rainwater is demanded. To do this, the existing sewage (including rainwater) fee imposition system should be philosophically evaluated. This study presents problematic issues of the existing domestic sewage fee imposition system considering the principle of sharing costs on the service of sewage and rainwater collection and treatment. Four methods to improve the existing sewage fee imposition system are suggested: 1) imposing stormwater fee according to Polluter Pays Principle, 2) clarification of the share of public sector, 3) reducing or exempting the sewerage fee for inhabitants reducing urban runoff by constructing their own rainwater management facilities, 4) imposing charge for discharging rainwater to sewers due to new development action. Short, mid, or long term planning for rainwater management is recommended considering the situation of each municipality.

고속도로 영업소 토지이용에서의 비점오염원 원단위 산정 (Determination of Nonpoint pollutant Unit Loads in Toll-gate of Highway)

  • 손현근;이은주;이소영;김이형
    • 한국습지학회지
    • /
    • 제10권1호
    • /
    • pp.69-75
    • /
    • 2008
  • 토지이용의 고도화는 다양한 비점오염물질의 축적을 야기하며 강우 시 유역에 존재하는 수계로 유출되어 수생태계에 악영향을 끼치게 된다. 현재 환경부는 이러한 비점오염물질의 유출을 저감하기 위하여 다양한 토지이용별 비점오염물질 유출원단위를 제정하여 유역관리에 적용하고 있다. 그러나, 현재 적용되고 있는 토지이용별 원단위는 논, 밭, 대지, 목장, 임야, 골프장 및 기타와 같이 7개로 분류하고 있다. 이러한 원인으로 인하여 실제로 비점오염물질의 유출이 매우 높은 상업지역, 주거지역, 도로, 고속도로, 주차장, 산업지역, 공공지역 등과 같은 토지이용에 대하여 명확한 토지이용별 유출원단위를 제시하지 못하여 수질오염총량관리제 시행에 큰 애로사항으로 남아있다. 따라서 본 연구에서는 포장지역중 불투수율이 높은 고속도로 영업소 지역의 토지 이용에 대하여 2006부터 2007년까지 약 2년에 걸친 모니터링 자료를 활용하여, 비점오염 저감시설 설치와 계획수립 시 적합한 원단위를 제시하고자 한다.

  • PDF

동적 EMC를 이용한 고속도로 초기우수 처리 기준 산정 (Determination of First Flush Criteria in Highway Stormwater Runoff using Dynamic EMCs)

  • 김이형;이은주;고석오;김성길;이병식;이주광;강희만
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.294-299
    • /
    • 2006
  • The Ministry of Environment in Korea has introduced Total Pollution Load Management System (TPLMS) in major 4 large rivers to protect the water quality from possible pollutants. In order to successfully achieve the TPLMS, the nonpoint source should be controled by applying the best management practices in highly polluted areas. Of the various nonpoint sources, the highways are stormwater intensive landuses because of its high imperviousness and high pollutant mass emissions. The EMC (Event Mean Concentration) is an important parameter to correctly determine the pollutant mass loadings from nonpoint sources. However, it has wide ranges because of various reasons such as first flush phenomenon, rainfall and watershed characteristics. Even though the EMC is closely related to the first flush phenomenon, the relationship have not proven until present. Therefore, in this paper, the dynamic EMC method will be introduced to clearly make the relationship between EMC and first flush phenomenon. Also by applying the dynamic EMC method to monitored data, we found that the highly concentrated stormwater runoff was washed off within 20~50 minutes storm duration. The first flush criteria for economical treatment was also determined to 5~10 mm (mean=7.4 mm) as a cumulative rainfall.

청양-홍성간 도로에서의 초기강우에 의한 유출부하량 평가 및 기여율 산정 (Evaluation of Runoff Loads and Computing of Contribute ratio by First Flush Stormwater from Cheongyang-Hongseong Road)

  • 이춘원;강선홍;최이송;안태웅
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.407-417
    • /
    • 2011
  • Nowadays, the high land use, mainly used for urbanization, is affecting runoff loads of non-point pollutants to increase. According to this fact, increasing runoff loads seems like to appear that it contributes to high ratio of pollution loads in the whole the pollution loads and that this non-point source is the main cause of water becoming worse quality. Especially, concentrated pollutants on the impermeable roads run off to the public water bodies. Also the coefficient of runoff from roads is high with a fast velocity of runoff, which ends up with consequence that a lot of pollutants runoff happens when it is raining. Therefore it is very important project to evaluate the quantity of pollutant loads. In this study, I computed the pollutant loadings depending on time and rainfall to analyze characteristics of runoff while first flush storm water and evaluated the runoff time while first flush storm water and rainfall based on the change in curves on the graph. I also computed contribution ratio to identify its impact on water quality of stream. I realized that the management and treatment of first flush storm water effluents is very important for the management of road's non-point source pollutants because runoff loads of non-point source pollution are over the 80% of whole loads of stream. Also according to the evaluation of runoff loads of first flush storm water for SS, run off time was shown under the 30 minute and rainfall was shown under the 5mm which is less than 20% of whole rainfall. These are under 5mm which is regarded amount of first flush storm water by the Ministry of Environment and it is judged to be because run off by rainfall is very fast on impermeable roads. Also, run off time and rainfall of BOD is higher than SS. Therefore I realized that the management of non-point source should be managed and done differently depending on each material. Finally, the contribution ratio of pollutants loads by rainfall-runoff was shown SS 12.7%, BOD 12.7%, COD 15.9%, T-N 4.9%, T-P 8.9%, however, the pollutants loads flowing into the steam was shown 4.4%. This represents that the concentration of non-point pollutants is relatively higher and we should find the methodical management and should be concerned about non-point source for improvement on water quality of streams.

건물영향을 고려한 GIS기반 도시침수해석 모형 (GIS-based Urban Flood Inundation Analysis Model Considering Building Effect)

  • 이창희;한건연
    • 한국수자원학회논문집
    • /
    • 제40권3호
    • /
    • pp.223-236
    • /
    • 2007
  • e o최근에 들어 도시지역에서는 국지성 집중호우에 의한 홍수피해가 증가하고 있다. 심지어 우수설비 시스템이 비교적 잘 갖추어진 개발 지역에서도 기존의 우수설비시스템의 용량이 초과되어 큰 침수피해가 발생하고 있다. 이로 인해 건물, 공공기반시설 등 재산 및 인명 등에 있어 많은 피해를 야기하고 있으며, 도로의 침수는 운송 시스템의 기능에 문제를 일으키게 되어 도시의 산업과 기능을 마비시킨다. 이러한 도시지역 홍수에 대비하여 도시지역의 복잡한 지형 형상과 인위적 배수시스템을 함께 고려하여 해석할 수 있는 적절한 침수해석모형이 필요하다. 본 연구에서는 배수시스템 해석 모형인 SWMM모형과 도시침수해석 모형인 DEM 기반 침수해석모형을 통합하고, 두 모형간의 유량의 전송과정을 수리학적 관계를 고려한 이중 배수(Dual-Drainage) 개념에 의한 도시침수해석모형을 이용하였다. 본 연구에서는 이중배수 침수해석모형을 수정하여 건물의 영향을 고려할 수 있도록 구성하였다. 본 모형의 개발로 침수상황의 시간별 진행과정을 분석함으로써 도시홍수에 대한 침수위험지점 파악 및 홍수 취약지점에서의 긴급대피 계획수립 등에 활용될 수 있을 것으로 판단된다.

단기 수리학적 충격부하시 침전지 내장형 상분리 산화구공정의 처리 안정성 평가 (Stability Evaluation of Phased Isolation Intra-Clarifier Ditch Process on Short-Term Hydraulic Shock Loading)

  • 홍기호;장덕
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.791-799
    • /
    • 2005
  • The phased isolation intra-clarifier ditch system used in this study is a simplified novel process enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater in terms of elimination of additional pre-anaerobic reactor, external clarifier, recycle of sludge, and nitrified effluent recirculation by employing intrachannel clarifier. Laboratory-scale phased isolation ditch system was used to assess the treatability on municipal wastewater. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31days, and cycle times of 2~8hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 70~84%, and 65~90%, respectively. The rainfall in Korea is generally concentrated in summer because of site-specific characteristics. Especially, the wet season has set in on June to August. In combined sewers, seasonal variations are primarily a function of the amount of stormwater that enters the system. In order to investigate the effect of hydraulic shock loading on system performance, the laboratory-scale system was operated at an HRT of 6hours (two times of influent flowrate) during two cycles (8hours). The system performance slightly decreased by increasing of influent flowrate and decreasing of system HRT. Nitrification efficiency and TN removal were slightly decreased by increasing of influent flowrate (decreasing of system HRT), whereas, the denitrification was not affected by hydraulic shock loading. However, the higher system performance could be achieved again after four cycles. Thus, the phased isolation technology for enhanced biological nutrient removal in medium- and small-scale wastewater treatment plants suffering fluctuation of influent quality and flowrate.