• 제목/요약/키워드: Concave surface

검색결과 207건 처리시간 0.024초

견관절 장애와 관절 가동운동(mobilization) (Joint Mobilization Techniques of the Shoulder Joint Dysfunction)

  • 김선엽
    • 대한정형도수물리치료학회지
    • /
    • 제2권1호
    • /
    • pp.39-49
    • /
    • 1996
  • The techniques of joint mobilization and traction are used to improve joint mobility or to decrease pain by restoring accessory movements to the shoulder joints and thus allowing full, nonrestriced, pain-free range of motion. In the glenohumeral joint, the humeral head would be the convex surface, while the glenoid fossa would be the concave surface. The medial end of the clavicle is concave anterioposteriorly and convex superioinferiorly, the articular surface of the sternum is reciprocally curved. The acromioclavicular joint is a plane synovial joint between a small convex facet on lateral end of the clavicle and a small concave facet on the acromion of the scapula. The relationship between the shape of articulating joint surface and the direction of gliding is defined by the convex-concave rule. If the concave joint surface is moving on a stationary convex surface, gliding occur in the same direction as the rolling motion. If the convex surface is moving on a stationary concave surface, gliding will occur in an opposite direction to rolling. Hypomobile shoulder joint are treated be using a gliding technique.

  • PDF

견관절 장애와 관절 가동운동 (Joint mobilization techniques of the shoulder joint dysfunction)

  • 김선엽;두정희
    • 한국전문물리치료학회지
    • /
    • 제2권2호
    • /
    • pp.108-118
    • /
    • 1995
  • The techniques of joint mobilization and traction are used to improve joint mobility or to decrease pain by restoring accessory movements to the shoulder joints and thus allowing full, nonrestriced, pain-free range of motion. In the glenohumeral joint, the humeral head would be the convex surface, while the glenoid fossa would be the concave surface. The medial end of the clavicle is concave anterioposteriorly and convex superioinferiorly, the articular surface of the sternum is reciprocally curved. The acromioclavicular joint is a plane synovial joint between a small convex facet on lateral end of the clavicle and a small concave facet on the acromion of the scapula. The relationship between the shape of articulating joint surface and the direction of gliding is defined by the Convex-Concave Rule. If the concave joint surface is moving on a stationary convex surface, gliding occur in the same direction as the rolling motion. If the convex surface is moving on a stationary concave surface, gliding will occur in an opposite direction to rolling. Hypomobile shoulder joints are treated be using a gliding technique.

  • PDF

반원 오목면에 분사되는 제트충돌 냉각에 관한 실험적 연구 (An Experimental Study of Jet Impingement Cooling on the Semi-Circular Concave Surface)

  • 양근영;최만수;이준식
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1083-1094
    • /
    • 1995
  • An experimental study has been carried out for jet-impingement cooling on the semi-circular concave surface. Two different nozzles(round edged nozzle and rectangular edged nozzle) are utilized and heat transfer coefficients on the concave surface have been measured under a constant heat flux condition. The characteristics of heat transfer has been discussed in conjunction with measured jet flow. Velocity and turbulence intensity of free jets issuing from two different nozzles have been measured by Laser Doppler Anemometry and theromocouple measurements have been done for temperatures on the concave surface. The effects of the nozzle shape, the distance between the nozzle exit and the stagnation point of the surface and the nozzle exit velocity on heat transfer were studied.

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

저속충돌조건에서 효과적인 충돌에너지흡수를 위한 알루미늄 크래쉬 박스의 비드형상 효과 (Effect of Bead Shape in Aluminum Crash Box for Effective Impact Energy Absorption Under Low- Velocity Impact Condition)

  • 이찬주;이선봉;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1155-1162
    • /
    • 2012
  • 알루미늄 크래쉬 박스는 저속충돌조건에서 프론트 사이드 멤버를 변형을 방지하기 위한 부품이다. 본 연구에서는 저속충돌조건에서 비드형상이 알루미늄 크래쉬 박스의 충돌성능에 미치는 영향을 분석하였다. Edge concave, surface convex 와 surface concave 타입의 비드형상들에 대한 충돌해석 및 실험을 수행하여 비드가 없는 normal 타입의 알루미늄 크래쉬 박스의 충돌성능과 비교분석하였다. 충돌성능은 저속충돌조건에서 크래쉬 박스의 초기 최대하중 및 충돌에너지 흡수능으로 평가하였다. 이를 검증하기 위해 알루미늄 크래쉬 박스와 결합된 프론트 사이드 멤버에 대해 저속충돌실험 수행하고, 이를 분석하였다. Surface concave 타입의 비드가 삽입된 알루미늄 크래쉬 박스 경우, 프론트 사이드 멤버의 변형을 방지할 수 있음을 확인하였다.

오목면 및 볼록면에 존재하는 난류경계층유동과 경사지게 분사되는 난류제트의 유동특성 (Flow Characteristics of Inclined Turbulent Jet Issuing into Turbulent Boundary Layer Developing on Concave and Convex Surfaces)

  • 이상우;이준식;이택식
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.302-312
    • /
    • 1992
  • Three dimensional velocity measurements of a 35.deg. inclined jet issuing into turbulent boundary layer on both concave and convex surfaces have been conducted. To investigate solely the effect of each curvature on the flow field, streamwise pressure variations are minimized by adjusting the shape of the opposite wall in the curved region. From the measured velocity components, streamwise mean vorticities are calculated to determine jet-crossflow interface. The results on convex surface show that the injected jet is separated from the wall and the bound vortex maintains its structure far downstream. On concave surface, the secondary flow in the jet cross-sections are enhanced and in some downstream region from the jet exit, the flow on the concave surface has been developed to Taylor-Gortler vortices

곡면에서의 열전달성능 향상을 위한 충돌제트의 최적설계 (Design Optimization of an Impingement Jet on Concave Surface for Enhancement of Heat Transfer Performance)

  • 허만웅;이기돈;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.100-103
    • /
    • 2011
  • In the present work, a numerical study of fluid flow and heat transfer on the concave surface with impinging jet has been performed by solving three-dimensional Reynods-averaged Naver-Stokes(RANS) equations. The constant temperature condition was applied to the concave impingement surface. The inclination angle of jet nozzle and the distance between jet nozzles are chosen as design variables under equivalent mass flow rate of working fluid into cooling channel, and area averaged Nusselt number on concave impingement surface is set as the objective function. Thirteen training points are obtained by Latin Hypercube sampling method, and the PEA model is constructed by using the objective function values at the trainging points. And, the sequential quadratic programming is used to search for the optimal paint from the PBA model. Through the optimization, the optimal shape shows improved heat transfer rate as compared to the reference geometry.

  • PDF

표면조도를 가지는 오목한 면에 충돌하는 원형제트에 의한 열전달 측정 (Heat Transfer Measurement by a Round Jet Impinging on a Rib-Roughened Concave Surface)

  • 이대희;원세열;이준식
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.734-743
    • /
    • 1999
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the concave surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 4 to 10, the dimensionless surface curvature (d/D) 0.056, and the rib type (height ($d_1$) 0.2 cm, pitch (p) from 1.2 to 3.2 cm). It was founded that only when $L/d{\geq}6$, the average Nusselt numbers on the concave surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by the effect of rib attached to the wall surface. It was realized that the rib attached to the concave surface may no longer enhance the heat transfer rate or even lowers it depending on the rib type and flow conditions. In addition, the results by the steady-state method using the gold-film Intrex were in good agreement with those by the transient shroud method.

영상의 단순 볼록 곡면과 단순 오목 곡면 특성을 이용한 확대 영상의 효율적인 화질 개선 기법 (An efficient quality improvement scheme for magnified image by using simple convex surface and simple concave surface characteristics in image)

  • 정수목
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권11호
    • /
    • pp.59-68
    • /
    • 2013
  • 본 논문에서는 영상에 존재하는 단순 볼록 곡면과 단순 오목 곡면을 추정하기 위한 효과적인 기법을 제안하였고 이 기법을 확대하고자 하는 입력 영상에 적용하여 단순 볼록 곡면 혹은 단순 오목 곡면을 갖는지 추정한다. 단순 볼록 곡면 혹은 단순 오목 곡면을 갖는 경우, 곡면의 특성이 충실하게 반영되도록 보간값을 구하는 효율적인 기법을 제안하였다. 본 논문에서 제안된 기법들을 적용하여 구한 보간 픽셀값들을 사용하여 구성된 확대 영상은 기존의 기법들에 의한 확대 영상보다 실제 영상에 더욱 충실하게 된다. 제안된 기법을 적용하여 구성된 확대 영상의 화질을 측정하기 위하여 PSNR(Peak Signal to Noise Ratio)을 사용하였다. 제안된 기법들을 적용한 확대 영상들의 PSNR값이 기존의 기법들을 적용한 확대 영상들의 PSNR값보다 큰 것을 실험을 통하여 확인하였다.

아연도금 강판의 대기부식에 미치는 표면 거칠기의 영향 (Effects of Surface Roughness on Atmospheric Corrosion of Galvanized Steel Sheets)

  • 안진호;강성군;장세기
    • 한국표면공학회지
    • /
    • 제31권6호
    • /
    • pp.307-316
    • /
    • 1998
  • The effects of surface roughness on chromate conversion coating and the corrosion behavior of galvanized steel sheets were investigated. Surface roughness was differently given to the galvanized steel sheets tested and these were then chromated. Accelerated corrosion test was conducted under the condition of $30^{\circ}C$, 90%RH with flowing 200ppm $SO_2$ gas. The galvanized steels were also exposed to urban environment for 5 weeks. The corrosion rates were measured by weight gain method. The distribution of chromate film and corrosion product on the coating were examined which SEM/EDS. The chromate film formed preferentially at the convex sites rather than at the concave sites on the surface. The corrosion products were found at the concave sites where the chromate film formed rarely. The corrosion product on the coating were found at the concave sites where the chromate film formed rarely. The corrosion rates increased slightly with the surface roughness in accelerated corrosion test but significantly in field test.

  • PDF