• Title/Summary/Keyword: Computing learning

Search Result 1,243, Processing Time 0.034 seconds

Development of External Expansion Devices and Convergence Contents for Future Education based on Software Teaching Tools (소프트웨어 교육용 교구 활용 미래 교육을 위한 융합 콘텐츠 및 외부 확장장치 개발)

  • Ju, Yeong-Tae;Kim, Jong-Sil;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1317-1322
    • /
    • 2021
  • Software in the era of the Fourth Industrial Revolution is becoming a key foundation in an intelligent information society. Therefore, it is necessary to study the new direction of manpower training and education that can cope with the times. To this end, the Ministry of Education reorganized the curriculum and is implementing software education based on a logical problem-solving process based on computing thinking skills rather than acquiring general ICT knowledge. However, there is a lack of securing high-quality educational content for software education, and there is also a lack of teaching aids that can be taught in connection with advanced IT technologies. To overcome this, this paper proposes the development of external expansion devices to expand educational content and functions capable of convergent software education such as artificial intelligence using coding robots for software education. Through this, effective software education is possible by improving the curriculum of the existing simple problem-solving method and developing various learning materials.

A Study on Predictive Preservation of Equipment Management System with Integrated Intelligent IoT (지능형 IoT를 융합한 장비 운용 시스템의 예지 보전을 위한 연구)

  • Lee, Sang-Deok;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.83-89
    • /
    • 2022
  • Internet of Things technology is rapidly developing due to the recent development of information and communication technology. IoT technology utilizes various sensors to generate unique data from each sensor, enabling diagnosis of system status. However, the equipment management system currently in effect is a post-preservation concept in which administrators must deal with the problem after the problem occurs, which could mean system reliability and availability problems due to system errors, and could result in economic losses due to negative productivity disruptions. Therefore, this study confirmed that edge controller control decision algorithms for more efficient operation of rectifiers in the factory by applying intelligent IoT (AIoT) technology and domain knowledge-based modeling for each sensor data collected based on this, outputting appropriate status messages for each scenario.

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.

Compression of DNN Integer Weight using Video Encoder (비디오 인코더를 통한 딥러닝 모델의 정수 가중치 압축)

  • Kim, Seunghwan;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.778-789
    • /
    • 2021
  • Recently, various lightweight methods for using Convolutional Neural Network(CNN) models in mobile devices have emerged. Weight quantization, which lowers bit precision of weights, is a lightweight method that enables a model to be used through integer calculation in a mobile environment where GPU acceleration is unable. Weight quantization has already been used in various models as a lightweight method to reduce computational complexity and model size with a small loss of accuracy. Considering the size of memory and computing speed as well as the storage size of the device and the limited network environment, this paper proposes a method of compressing integer weights after quantization using a video codec as a method. To verify the performance of the proposed method, experiments were conducted on VGG16, Resnet50, and Resnet18 models trained with ImageNet and Places365 datasets. As a result, loss of accuracy less than 2% and high compression efficiency were achieved in various models. In addition, as a result of comparison with similar compression methods, it was verified that the compression efficiency was more than doubled.

Predicting the Future Price of Export Items in Trade Using a Deep Regression Model (딥러닝 기반 무역 수출 가격 예측 모델)

  • Kim, Ji Hun;Lee, Jee Hang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.10
    • /
    • pp.427-436
    • /
    • 2022
  • Korea Trade-Investment Promotion Agency (KOTRA) annually publishes the trade data in South Korea under the guidance of the Ministry of Trade, Industry and Energy in South Korea. The trade data usually contains Gross domestic product (GDP), a custom tariff, business score, and the price of export items in previous and this year, with regards to the trading items and the countries. However, it is challenging to figure out the meaningful insight so as to predict the future price on trading items every year due to the significantly large amount of data accumulated over the several years under the limited human/computing resources. Within this context, this paper proposes a multi layer perception that can predict the future price of potential trading items in the next year by training large amounts of past year's data with a low computational and human cost.

A Study on the Evaluation of Classification Performance by Capacity of Explosive Components using Convolution Neural Network (CNN) (컨볼루션 신경망(CNN)을 이용한 폭발물 성분 용량별 분류 성능 평가에 관한 연구)

  • Lee, Chang-Hyeon;Cho, Sung-Yoon;Kwon, Ki-Won;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • This paper is a study to evaluate the performance when classifying explosive components by capacity using a convolutional neural network (CNN). Among the existing explosive classification methods, the IMS steam detector method determines the presence or absence of an explosive only when the explosive concentration exceeds the threshold set by the user. The IMS steam detector has a problem of determining that even if an explosive exists, the explosive does not exist in an amount that does not exceed the threshold. Therefore, it is necessary to detect the explosive component even when the concentration of the explosive component does not exceed the threshold. Accordingly, in this paper, after imaging explosive time series data with the Gramian Angular Field (GAF) algorithm, it is possible to determine whether there are explosive components and the amount of explosive components even when the concentration of explosive components does not exceed a threshold.

The Case Study for Childcare Service Demand Forecasting Using Bigdata Reference Analysis Model (빅데이터 표준분석모델을 활용한 초등돌봄 수요예측 사례연구)

  • Yun, Chung-Sik;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • This paper is an empirical analysis as a reference model that can predict up to the maximum number of elementary school student care needs in local governments across the country. This study analyzed and predicted the characteristics of the region based on machine learning to predict the demand for elementary care in a new apartment complex. For this purpose, a total of 292 variables were used, including data related to apartment structure, such as number of parking spaces per household, and building-to-land ratio, environmental data around apartments such as distance to elementary schools, and population data of administrative districts. The use of various variables is of great significance, and it is meaningful in complex analysis. It is also an empirical case study that increased the reliability of the model through comparison with the actual value of the basic local government.

Analsis Of Outliers In Real Estate Prices Using Autoencoder (Autoencoder 기법을 활용한 부동산 가격 이상치 분석)

  • Kim, Yoonseo;Park, Jongchan;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1739-1748
    • /
    • 2021
  • Real estate prices affect countries, businesses, and households, and many studies have been conducted on the real estate bubble in recent soaring real estate prices. However, if the real estate bubble prediction simply compares the real estate price, or if it does not reflect key psychological variables in real estate sales, it can be judged that the accuracy of the bubble prediction model is poor. The purpose of this study is to design a predictive model that can explain the real estate bubble situation by region using the autoencoder technique. Existing real estate bubble analysis studies failed to set various types of variables that affect prices, and most of them were conducted based on linear models. Thus, this study suggests the possibility of introducing techniques and variables that have not been used in existing real estate bubble studies.

A Method for Region-Specific Anomaly Detection on Patch-wise Segmented PA Chest Radiograph (PA 흉부 X-선 영상 패치 분할에 의한 지역 특수성 이상 탐지 방법)

  • Hyun-bin Kim;Jun-Chul Chun
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Recently, attention to the pandemic situation represented by COVID-19 emerged problems caused by unexpected shortage of medical personnel. In this paper, we present a method for diagnosing the presence or absence of lesional sign on PA chest X-ray images as computer vision solution to support diagnosis tasks. Method for visual anomaly detection based on feature modeling can be also applied to X-ray images. With extracting feature vectors from PA chest X-ray images and divide to patch unit, region-specific abnormality can be detected. As preliminary experiment, we created simulation data set containing multiple objects and present results of the comparative experiments in this paper. We present method to improve both efficiency and performance of the process through hard masking of patch features to aligned images. By summing up regional specificity and global anomaly detection results, it shows improved performance by 0.069 AUROC compared to previous studies. By aggregating region-specific and global anomaly detection results, it shows improved performance by 0.069 AUROC compared to our last study.

A Development and Application of Data Visualization EducationProgram for 3rd Grade Students in Elementary School (초등학교 3학년 학생들을 위한 데이터 시각화 교육 프로그램 개발 및 적용)

  • Jiseon Woo;Kapsu Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.6
    • /
    • pp.481-490
    • /
    • 2022
  • With the development of computing technology, the big data era has arrived, and we live with a lot of data around us. Elementary school students are no exception. Therefore, it is very important to learn to process data from elementary school. Since elementary school students have intuitive thinking, data visualization, which expresses data directly in pictures, is an important learning element. In this study, we study how effective elementary school students can visualize data in their daily lives to improve their information processing capabilities. Adata visualization program was developed by organizing and visualizing data using data visualization tools for the 8th class, which can be done by third graders in elementary school, and then experiencing the process of interaction. As a result of applying the developed program to 186 students in 7 classes, knowledge information processing competency factors were evaluated before and after class. As a result of the pre- and post-test, there was a significant difference in knowledge information processing capabilities. Therefore, the data visualization program developed in this study is effective.