• Title/Summary/Keyword: Computer-networks

Search Result 5,262, Processing Time 0.033 seconds

Student Group Division Algorithm based on Multi-view Attribute Heterogeneous Information Network

  • Jia, Xibin;Lu, Zijia;Mi, Qing;An, Zhefeng;Li, Xiaoyong;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3836-3854
    • /
    • 2022
  • The student group division is benefit for universities to do the student management based on the group profile. With the widespread use of student smart cards on campus, especially where students living in campus residence halls, students' daily activities on campus are recorded with information such as smart card swiping time and location. Therefore, it is feasible to depict the students with the daily activity data and accordingly group students based on objective measuring from their campus behavior with some regular student attributions collected in the management system. However, it is challenge in feature representation due to diverse forms of the student data. To effectively and comprehensively represent students' behaviors for further student group division, we proposed to adopt activity data from student smart cards and student attributes as input data with taking account of activity and attribution relationship types from different perspective. Specially, we propose a novel student group division method based on a multi-view student attribute heterogeneous information network (MSA-HIN). The network nodes in our proposed MSA-HIN represent students with their multi-dimensional attribute information. Meanwhile, the edges are constructed to characterize student different relationships, such as co-major, co-occurrence, and co-borrowing books. Based on the MSA-HIN, embedded representations of students are learned and a deep graph cluster algorithm is applied to divide students into groups. Comparative experiments have been done on a real-life campus dataset collected from a university. The experimental results demonstrate that our method can effectively reveal the variability of student attributes and relationships and accordingly achieves the best clustering results for group division.

A New Face Morphing Method using Texture Feature-based Control Point Selection Algorithm and Parallel Deep Convolutional Neural Network (텍스처 특징 기반 제어점 선택 알고리즘과 병렬 심층 컨볼루션 신경망을 이용한 새로운 얼굴 모핑 방법)

  • Park, Jin Hyeok;Khan, Rafiul Hasan;Lim, Seon-Ja;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.176-188
    • /
    • 2022
  • In this paper, we propose a compact method for anthropomorphism that uses Deep Convolutional Neural Networks (DCNN) to detect the similarities between a human face and an animal face. We also apply texture feature-based morphing between them. We propose a basic texture feature-based morphing system for morphing between human faces only. The entire anthropomorphism process starts with the creation of an animal face classifier using a parallel DCNN that determines the most similar animal face to a given human face. The significance of our network is that it contains four sets of convolutional functions that run in parallel, allowing it to extract more features than a linear DCNN network. Our employed texture feature algorithm-based automatic morphing system recognizes the facial features of the human face and takes the Control Points automatically, rather than the traditional human aiding manual morphing system, once the similarity was established. The simulation results show that our suggested DCNN surpasses its competitors with a 92.0% accuracy rate. It also ensures that the most similar animal classes are found, and the texture-based morphing technology automatically completes the morphing process, ensuring a smooth transition from one image to another.

Matrix Character Relocation Technique for Improving Data Privacy in Shard-Based Private Blockchain Environments (샤드 기반 프라이빗 블록체인 환경에서 데이터 프라이버시 개선을 위한 매트릭스 문자 재배치 기법)

  • Lee, Yeol Kook;Seo, Jung Won;Park, Soo Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Blockchain technology is a system in which data from users participating in blockchain networks is distributed and stored. Bitcoin and Ethereum are attracting global attention, and the utilization of blockchain is expected to be endless. However, the need for blockchain data privacy protection is emerging in various financial, medical, and real estate sectors that process personal information due to the transparency of disclosing all data in the blockchain to network participants. Although studies using smart contracts, homomorphic encryption, and cryptographic key methods have been mainly conducted to protect existing blockchain data privacy, this paper proposes data privacy using matrix character relocation techniques differentiated from existing papers. The approach proposed in this paper consists largely of two methods: how to relocate the original data to matrix characters, how to return the deployed data to the original. Through qualitative experiments, we evaluate the safety of the approach proposed in this paper, and demonstrate that matrix character relocation will be sufficiently applicable in private blockchain environments by measuring the time it takes to revert applied data to original data.

Estimation of Urban Traffic State Using Black Box Camera (차량 블랙박스 카메라를 이용한 도시부 교통상태 추정)

  • Haechan Cho;Yeohwan Yoon;Hwasoo Yeo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.133-146
    • /
    • 2023
  • Traffic states in urban areas are essential to implement effective traffic operation and traffic control. However, installing traffic sensors on numerous road sections is extremely expensive. Accordingly, estimating the traffic state using a vehicle-mounted camera, which shows a high penetration rate, is a more effective solution. However, the previously proposed methodology using object tracking or optical flow has a high computational cost and requires consecutive frames to obtain traffic states. Accordingly, we propose a method to detect vehicles and lanes by object detection networks and set the region between lanes as a region of interest to estimate the traffic density of the corresponding area. The proposed method only uses less computationally expensive object detection models and can estimate traffic states from sampled frames rather than consecutive frames. In addition, the traffic density estimation accuracy was over 90% on the black box videos collected from two buses having different characteristics.

Futures Price Prediction based on News Articles using LDA and LSTM (LDA와 LSTM를 응용한 뉴스 기사 기반 선물가격 예측)

  • Jin-Hyeon Joo;Keun-Deok Park
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.167-173
    • /
    • 2023
  • As research has been published to predict future data using regression analysis or artificial intelligence as a method of analyzing economic indicators. In this study, we designed a system that predicts prospective futures prices using artificial intelligence that utilizes topic probability data obtained from past news articles using topic modeling. Topic probability distribution data for each news article were obtained using the Latent Dirichlet Allocation (LDA) method that can extract the topic of a document from past news articles via unsupervised learning. Further, the topic probability distribution data were used as the input for a Long Short-Term Memory (LSTM) network, a derivative of Recurrent Neural Networks (RNN) in artificial intelligence, in order to predict prospective futures prices. The method proposed in this study was able to predict the trend of futures prices. Later, this method will also be able to predict the trend of prices for derivative products like options. However, because statistical errors occurred for certain data; further research is required to improve accuracy.

The Impact of the User Characteristics of the VR Exhibition on Space Participation and Immersion

  • Wang, Minglu;Lee, Jong-Yoon;Liu, Shanshan
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • With the advent of the 5G, networks and information and communication technologies have been continuously developed. In the fields of art galleries, virtual reality (VR) exhibitions that can be visited online have emerged, innovating the way of human-computer interaction and creating new artistic experiences for users. This study explores the three-dimensionality, clarity, and innovative interactions that users experience when viewing a VR exhibit, which affects the exhibit's presence. Besides, in terms of research method, the research sets spatial participation and immersion as dependent variables, with three-dimensionality (high versus low), clarity (high versus low), and innovation (high versus low) in a 2×2×2 design as the base, and explores their interaction effects. The results show that three-dimensionality and innovative interactions affect spatial participation. First of all, in groups with high innovation and low three-dimensionality, spatial participation presents a higher positive factor. Secondly, with regard to immersion, three-dimensionality, clarity and innovation present a tripartite interaction. Groups with low three-dimensionality and high clarity have a higher positive effect on immersion when the level of innovation is low. When the degree of innovation is high, the positive effect on immersion is higher in groups with high three-dimensionality and low clarity. The above results show that in the production of VR exhibitions, it is necessary to increase the three-dimensionality and clarity of exhibited image contents, while taking into account the user's perception and innovativeness. On the other hand, this study puts forward suggestions for the design, content and future development of VR exhibitions, which has important reference significance for the improvement and innovation of future VR exhibitions.

Artificial neural network model for predicting sex using dental and orthodontic measurements

  • Sandra Anic-Milosevic;Natasa Medancic;Martina Calusic-Sarac;Jelena Dumancic;Hrvoje Brkic
    • The korean journal of orthodontics
    • /
    • v.53 no.3
    • /
    • pp.194-204
    • /
    • 2023
  • Objective: To investigate sex-specific correlations between the dimensions of permanent canines and the anterior Bolton ratio and to construct a statistical model capable of identifying the sex of an unknown subject. Methods: Odontometric data were collected from 121 plaster study models derived from Caucasian orthodontic patients aged 12-17 years at the pretreatment stage by measuring the dimensions of the permanent canines and Bolton's anterior ratio. Sixteen variables were collected for each subject: 12 dimensions of the permanent canines, sex, age, anterior Bolton ratio, and Angle's classification. Data were analyzed using inferential statistics, principal component analysis, and artificial neural network modeling. Results: Sex-specific differences were identified in all odontometric variables, and an artificial neural network model was prepared that used odontometric variables for predicting the sex of the participants with an accuracy of > 80%. This model can be applied for forensic purposes, and its accuracy can be further improved by adding data collected from new subjects or adding new variables for existing subjects. The improvement in the accuracy of the model was demonstrated by an increase in the percentage of accurate predictions from 72.0-78.1% to 77.8-85.7% after the anterior Bolton ratio and age were added. Conclusions: The described artificial neural network model combines forensic dentistry and orthodontics to improve subject recognition by expanding the initial space of odontometric variables and adding orthodontic parameters.

Efficient Access Management Scheme for Machine Type Communications in LTE-A Networks (LTE-A 네트워크 환경에서 MTC를 위한 효율적인 접근관리 기법)

  • Moon, Jihun;Lim, Yujin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.1
    • /
    • pp.287-295
    • /
    • 2017
  • Recently, MTC (Machine Type Communication) is known as an important part to support IoT (Internet of Things) applications. MTC provides network connectivities between MTC devices without human intervention. In MTC, a large number of devices try to access over communication resource with a short period of time. Due to the limited communication resource, resource contention becomes severe and it brings about access failures of devices. To solve the problem, it needs to regulate device accesses. In this paper, we present an efficient access management scheme. We measure the number of devices which try to access in a certain time period and predict the change of the number of devices in the next time period. Using the predicted change, we control the number of devices which try to access. To verify our scheme, we conduct experiments in terms of success probability, failure probability, collision probability and access delay.

Design Method of Things Malware Detection System(TMDS) (소규모 네트워크의 IoT 보안을 위한 저비용 악성코드 탐지 시스템 설계 방안 연구)

  • Sangyoon Shin;Dahee Lee;Sangjin Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.459-469
    • /
    • 2023
  • The number of IoT devices is explosively increasing due to the development of embedded equipment and computer networks. As a result, cyber threats to IoT are increasing, and currently, malicious codes are being distributed and infected to IoT devices and exploited for DDoS. Currently, IoT devices that are the target of such an attack have various installation environments and have limited resources. In addition, IoT devices have a characteristic that once set up, the owner does not care about management. Because of this, IoT devices are becoming a blind spot for management that is easily infected with malicious codes. Because of these difficulties, the threat of malicious codes always exists in IoT devices, and when they are infected, responses are not properly made. In this paper, we will design an malware detection system for IoT in consideration of the characteristics of the IoT environment and present detection rules suitable for use in the system. Using this system, it will be possible to construct an IoT malware detection system inexpensively and efficiently without changing the structure of IoT devices that are already installed and exposed to cyber threats.

A Training Case Study of Deep Learning Artificial Neural Networks for Teacher Educations (교사교육을 위한 딥러닝 인공신경망 교육 사례 연구)

  • Hur, Kyeong
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.385-391
    • /
    • 2021
  • In this paper, a case of deep learning artificial neural network education was studied for artificial intelligence literacy education for preservice teachers and incumbent teachers. In addition, through the proposed educational case, we tried to explore the contents of artificial neural network principle education that elementary, middle and high school students can experience. To this end, first, an example of training on the principle of operation of an artificial neural network that recognizes two types of images is presented. And as an artificial neural network extension application education case, an artificial neural network education case for recognizing three types of images was presented. The number of output layers was changed according to the number of images to be recognized by the artificial neural network, and the cases implemented in a spreadsheet were divided and explained. In addition, in order to experience the operation results of the artificial neural network, we presented the educational contents to directly write the learning data necessary for the artificial neural network of the supervised learning method. In this paper, the implementation of the artificial neural network and the recognition test results are visually presented using a spreadsheet.

  • PDF