• 제목/요약/키워드: Computer-aided Engineering

검색결과 1,172건 처리시간 0.024초

교정용 각형선재에 부여된 torque가 브라켓에 발생시키는 모멘트에 관한 유한요소법적 분석 (The moment generated by the torque of the orthodontic rectangular wire : Three-dimensional finite element analysis)

  • 하도원;김영석;성재현
    • 대한치과교정학회지
    • /
    • 제31권3호
    • /
    • pp.335-346
    • /
    • 2001
  • 본 연구의 목적은 교정치료의 마무리 단계에서 비람직하지 못한 순설측 경사를 가진 한 개 치아의 이동을 원할 때 브라켓 슬롯의 크기와 각형선재의 종류, 크기에 따라 부여하여야 할 적절한 임상적 torque (SWA의 각형선재에서 나머지 편평한 부분과 이동을 위해 변형시킨 부분의 단면이 이루는 각도만큼의 torque)의 양을 구하고자 하는 것이다. 임상적 torque는 play와 active torque(브라켓에 모멘트를 전달할 수 있는 torque)의 합으로 구성되는데, play는 수학적 공식을 이용하여 계산하였고 active torque는 컴퓨터를 이용한 삼차원 유한요소법으로 구하였다. 유한요소모델은 일렬로 배열된 세 개의 브라켓과 여기에 삽입된 stainless steel, TMA , NiTi 이렇게 3가지 종류의 교정용 각형선재로 구성된 다. 양쪽의 브라켓을 일정한 각도로 비틀어서 가운데 브라켓에 발생하는 모멘트를 계산하였다. 선재의 크기는 많이 사용되는 각형선재인 .016"X.022", .017"X.022", .017"X.025", .018"X.025", .019"X.025", .020"X.025". .021"X.025"의 7개로 디자인하였다. .018" 브라켓에는 .016"X.022", .017"X.022", .017"X.025" 선재를 삽입하여 실험하였고, .022" 브라켓에는 .016"X.022" 선재를 제외한 나미지 선재를 삽입하여 실험하였다. 실험으로 다음과 같은 결과를 얻었다. 1. 삽입된 브라켓 슬롯의 크기에 상관없이 같은 크기와 재질의 교정용 각형선재에 같은 active torque를 가하면 동일한 모멘트가 발생하였다. 2. 선재의 크기가 증가될 수록 동일한 active torque에 의해 발생되는 모멘트의 양은 증가하였다. 실험에 사용한 가장 굵은 선재인 .021"X.033" 선재는 동일한 재질의 가장 가는 .015"X.022" 선재에 비해 약 1.75배 더 큰 torsional stiffness를 가졌다. 3. 선재의 재질에 따라서는 stainless steel, TMA, NiTi순으로 torsional stiffness가 감소하였는데 stainless steel에 비해 TMA는 0.35배, NiTi는 0.16배였다. 4. 브라켓간 거리의 증가와 발생되는 torsional .stiffness는 반비례하였다. 브라켓간 거리의 증가에 의해 감소되는 torsional stiffness의 비율은 선재의 재질과 상관이 있었고 크기에 따라서는 큰 차이가 없었다. 5. 교정치료의 마무리 단계에서 이상적인 순설측 경사이동을 일으키는 임상적 torque의 공식과 값을 구하였다.

  • PDF

상용모사기를 이용한 로토석탄의 분할유동층 가스화기 가스화 특성 모사 (The Computer-Aided Simulation Study on the Gasification Characteristics of the Roto Coal in the Partitioned Fluidized-Bed Gasifier)

  • 박영철;문종호;이승용;이동호;진경태
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.511-515
    • /
    • 2012
  • 본 연구에서는 상용모사기를 이용하여 분할유동층 가스화기에서 로토석탄의 가스화 특성 모사를 수행하였다. 분할 유동층 가스화기는 가스화영역에서 일어나는 연소반응과 가스화반응(발열반응과 흡열반응)을 각각 다른 영역에서 일어날 수 있도록 반응기 내부를 분할한 가스화기이다. 분할유동층 가스화기의 주요 개념은 가스화에 요구되는 열을 연소영역에서 생성된 열을 이용하여 공급하는 것으로 가스화기 내부에서의 부분 연소를 억제하고, 격벽을 통한 열전달과 열매체의 이동을 통해 공급하는 것이다. 분할유동층 가스화기 모델은 열분해, 촤 가스화, 타르/오일 가스화, 촤 연소반응으로 4개의 영역을 가지도록 구현하였다. 열분해의 경우, 대상 석탄을 반응온도, 반응가스, 석탄주입량을 변화시켜 실험을 수행하여 실험데이터로부터 correlation 모델을 작성하였다. 가스화는 Gibbs free energy를 최소화하는 모델을 이용하고 촤 연소영역은 combustion 모델을 이용하였다. 분할유동층 가스화기 모사결과를 비교하기 위해 우선 단일영역 가스화기 모사를 수행하였다. 단일영역 가스화기의 경우 석탄열분해 반응기와 석탄가스화 반응기 두 개로 구성되며 반응모델은 분할유동층 가스화기와 일치한다. 분할유동층 가스화기 모사 결과, 냉가스효율은 84.4%로 단일영역 가스화기와 유사한 결과를 얻었으며 합성가스의 조성은 $H_2$$CH_4$이 다소 증가하고 CO와 $CO_2$가 다소 감소한 것을 확인하였다. 모델 검증을 위해 10건의 단일영역 가스화 실험에 대하여 모사를 수행하였다. 모사를 통해 얻어진 합성가스의 조성은 CO, $CO_2$, $CH_4$의 경우 실험결과와 모사결과가 거의 일치하는 반면 $H_2$의 경우 모사결과가 실험값과 비교하여 다소 높은 값을 갖는 것을 확인하였으나 경향은 실험값과 유사함을 확인하였다. 탄소전환율의 경우, 모델결과가 실험값과 비교하여 높은 전환율을 보이는 것을 알 수 있으며 이는 모사에 사용된 가스화 모델이 평형반응기로 반응기에서의 체류시간과 접촉시간이 실제 실험과 차이가 있기 때문으로 파악된다.