• Title/Summary/Keyword: Computer-aided Diagnosis

Search Result 162, Processing Time 0.028 seconds

Development of a GC-MS Diagnostic Method with Computer-aided Automatic Interpretation for Metabolic Disorders (GC-MS 크로마토그램의 컴퓨터 자동해석을 이용한 유전성 대사질환의 진단법 개발)

  • Yoon, Hye-Ran
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.6 no.1
    • /
    • pp.40-51
    • /
    • 2006
  • Purpose: A personal computer-based system was developed for automated metabolic profiling of organic aciduria and aminoacidopathy by gas chromatography-mass spectrometry and data interpretation for the diagnosis of metabolic disorders Methods: For automatic data profiling and interpretation, we compiled retention time, two target ions and their intensity ratio for 77 organic acids and 13 amino acids metabolites. Metabolites above the cut-off values were flagged as abnormal compounds. The data interpretation was a based on combination of flagged metabolites. Diagnostic or index metabolites were categorized into three groups, "and", "or" and "NO" compiled for each disorder to improve the specificity of the diagnosis. Groups "and" and "or" comprised essential and optional compounds, respectively, to reach a specific diagnosis. Group "NO" comprised metabolites that must be absent to make a definite diagnosis. We tested this system by analyzing patients with confirmed Propionic aciduria and others. Results: In all cases, the diagnostic metabolites were identified and correct diagnosis was founded to be made among the possible disease suggested by the system. Conclusion: The study showed that the developed method could be the method of choices in rapid, sensitive and simultaneous screening for organic aciduria and amino acidopathy with this simplified automated system.

  • PDF

Retrospective Analysis of Cytopathology using Gray Level Co-occurrence Matrix Algorithm for Thyroid Malignant Nodules in the Ultrasound Imaging (갑상샘 악성결절의 초음파영상에서 GLCM 알고리즘을 이용한 세포병리 진단의 후향적 분석)

  • Kim, Yeong-Ju;Lee, Jin-Soo;Kang, Se-Sik;Kim, Changsoo
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.237-243
    • /
    • 2017
  • This study evaluated the applicability of computer-aided diagnosis by retrospective analysis of GLCM algorithm based on cytopathological diagnosis of normal and malignant nodules in thyroid ultrasound images. In the experiment, the recognition rate and ROC curve of thyroid malignant nodule were analyzed using 6 parameters of GLCM algorithm. Experimental results showed 97% energy, 93% contrast, 92% correlation, 92% homogeneity, 100% entropy and 100% variance. Statistical analysis showed that the area under the curve of each parameter was more than 0.947 (p = 0.001) in the ROC curve, which was significant in the recognition of thyroid malignant nodules. In the GLCM, the cut-off value of each parameter can be used to predict the disease through analysis of quantitative computer-aided diagnosis.

Multi-scale Attention and Deep Ensemble-Based Animal Skin Lesions Classification (다중 스케일 어텐션과 심층 앙상블 기반 동물 피부 병변 분류 기법)

  • Kwak, Min Ho;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1212-1223
    • /
    • 2022
  • Skin lesions are common diseases that range from skin rashes to skin cancer, which can lead to death. Note that early diagnosis of skin diseases can be important because early diagnosis of skin diseases considerably can reduce the course of treatment and the harmful effect of the disease. Recently, the development of computer-aided diagnosis (CAD) systems based on artificial intelligence has been actively made for the early diagnosis of skin diseases. In a typical CAD system, the accurate classification of skin lesion types is of great importance for improving the diagnosis performance. Motivated by this, we propose a novel deep ensemble classification with multi-scale attention networks. The proposed deep ensemble networks are jointly trained using a single loss function in an end-to-end manner. In addition, the proposed deep ensemble network is equipped with a multi-scale attention mechanism and segmentation information of the original skin input image, which improves the classification performance. To demonstrate our method, the publicly available human skin disease dataset (HAM 10000) and the private animal skin lesion dataset were used for the evaluation. Experiment results showed that the proposed methods can achieve 97.8% and 81% accuracy on each HAM10000 and animal skin lesion dataset. This research work would be useful for developing a more reliable CAD system which helps doctors early diagnose skin diseases.

Diagnostic Performance of Combined Single Photon Emission Computed Tomographic Scintimammography and Ultrasonography Based on Computer-Aided Diagnosis for Breast Cancer (유방 SPECT 및 초음파 컴퓨터진단시스템 결합의 유방암 진단성능)

  • Hwang, Kyung-Hoon;Lee, Jun-Gu;Kim, Jong-Hyo;Lee, Hyung-Ji;Om, Kyong-Sik;Lee, Byeong-Il;Choi, Duck-Joo;Choe, Won-Sick
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.201-208
    • /
    • 2007
  • Purpose: We investigated whether the diagnostic performance of SPECT scintimammography (SMM) can be improved by adding computer-aided diagnosis (CAD) of ultrasonography (US). Materials and methods: We reviewed breast SPECT SMM images and corresponding US images from 40 patients with breast masses (21 malignant and 19 benign tumors). The quantitative data of SPECT SMM were obtained as the uptake ratio of lesion to contralateral normal breast. The morphologic features of the breast lesions on US were extracted and quantitated using the automated CAD software program. The diagnostic performance of SPECT SMM and CAD of US alone was determined using receiver operating characteristic (ROC) curve analysis. The best discriminating parameter (D-value) combining SPECT SMM and the CAD of US was created. The sensitivity, specificity and accuracy of combined two diagnostic modalities were compared to those of a single one. Results: Both SPECT SMM and CAD of US showed a relatively good diagnostic performance (area under curve = 0.846 and 0.831, respectively). Combining the results of SPECT SMM and CAD of US resulted in improved diagnostic performance (area under curve =0.860), but there was no statistical differerence in sensitivity, specificity and accuracy between the combined method and a single modality. Conclusion: It seems that combining the results of SPECT SMM and CAD of breast US do not significantly improve the diagnostic performance for diagnosis of breast cancer, compared with that of SPECT SMM alone. However, SPECT SMM and CAD of US may complement each other in differential diagnosis of breast cancer.

Pulmonary Vessel Extraction and Nodule Reclassification Method Using Chest CT Images (흉부 CT 영상을 이용한 폐 혈관 추출 및 폐 결절 재분류 기법)

  • Kim, Hyun-Soo;Peng, Shao-Hu;Muzzammil, Khairul;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.35-43
    • /
    • 2009
  • In the Computer Aided Diagnosis(CAD) System, the efficient way of classifying nodules from chest CT images of a patient is to perform the classification of the remaining part after the pulmonary vessel extraction. During the pulmonary vessel extraction, due to the small difference between the vessel and nodule features in imaging studies such as CT scans after having an injection of contrast, nodule maybe extracted along with the pulmonary vessel. Therefore, the pulmonary vessel extraction method plays an important role in the nodule classification process. In this paper, we propose a nodule reclassification method based on vessel thickness analysis. The proposed method consist of four steps, lung region searching step, vessel extraction and thinning step, vessel topology formation and correction step and the reclassification of nodule in the vessel candidate step. The radiologists helped us to compare the accuracy of the CAD system using the proposed method and the accuracy of general one. Experimental results show that the proposed method can extract pulmonary vessels and reclassify false-positive nodules accurately.

Computer-Aided Diagnosis for Liver Cirrhosis using Texture features Information Analysis in Computed Tomography (컴퓨터단층영상에서 TIA를 이용한 간경화의 컴퓨터보조진단)

  • Kim, Chang-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Dong-Hyun;Choi, Seok-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.358-366
    • /
    • 2012
  • Cirrhosis is a consequence of chronic liver disease characterized by replacement of liver tissue by fibrosis, scar tissue and regenerative nodules leading to loss of liver function. Liver Cirrhosis is most commonly caused by alcoholism, hepatitis B and C, and fatty liver disease, but has many other possible causes. Some cases are idiopathic disease from unknown cause. Abdomen of liver Computed tomography(CT) is one of the primary imaging procedures for evaluating liver disease such as liver cirrhosis, Alcoholic liver disease(ALD), cancer, and interval changes because it is economical and easy to use. The purpose of this study is to detect technique for computer-aided diagnosis(CAD) to identify liver cirrhosis in abdomen CT. We experimented on the principal components analysis(PCA) algorithm in the other method and suggested texture information analysis(TIA). Forty clinical cases involving a total of 634 CT sectional images were used in this study. Liver cirrhosis was detected by PCA method(detection rate of 35%), and by TIA methods(detection rate of 100%-AGI, TM, MU, EN). Our present results show that our method can be regarded as a technique for CAD systems to detect liver cirrhosis in CT liver images.

Texture Feature Analysis Using a Brain Hemorrhage Patient CT Images (전산화단층촬영 영상을 이용한 뇌출혈 질감특징분석)

  • Park, Hyonghu;Park, Jikoon;Choi, Ilhong;Kang, Sangsik;Noh, Sicheol;Jung, Bongjae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.369-374
    • /
    • 2015
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some brain hemorrhage patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of brain hemorrhage. As the results of examining over 40 example CT images of brain hemorrhage, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including average gray level, average contrast, smoothness, and Skewness while others showed a little low disease recognition rate: 95% for uniformity and 87.5% for entropy. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of brain hemorrhage and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

Binary Classification of Hypertensive Retinopathy Using Deep Dense CNN Learning

  • Mostafa E.A., Ibrahim;Qaisar, Abbas
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.98-106
    • /
    • 2022
  • A condition of the retina known as hypertensive retinopathy (HR) is connected to high blood pressure. The severity and persistence of hypertension are directly correlated with the incidence of HR. To avoid blindness, it is essential to recognize and assess HR as soon as possible. Few computer-aided systems are currently available that can diagnose HR issues. On the other hand, those systems focused on gathering characteristics from a variety of retinopathy-related HR lesions and categorizing them using conventional machine-learning algorithms. Consequently, for limited applications, significant and complicated image processing methods are necessary. As seen in recent similar systems, the preciseness of classification is likewise lacking. To address these issues, a new CAD HR-diagnosis system employing the advanced Deep Dense CNN Learning (DD-CNN) technology is being developed to early identify HR. The HR-diagnosis system utilized a convolutional neural network that was previously trained as a feature extractor. The statistical investigation of more than 1400 retinography images is undertaken to assess the accuracy of the implemented system using several performance metrics such as specificity (SP), sensitivity (SE), area under the receiver operating curve (AUC), and accuracy (ACC). On average, we achieved a SE of 97%, ACC of 98%, SP of 99%, and AUC of 0.98. These results indicate that the proposed DD-CNN classifier is used to diagnose hypertensive retinopathy.

Development of the Corrosion Deterioration Inspection Tool for Transmission Tower Members

  • Woo, Sangkyun;Chu, Inyeop;Youn, Byongdon;Kim, Kijung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.293-298
    • /
    • 2016
  • Recently, interests for maintenance of transmission tower are increasing to extend life of structures and reduce maintenance cost. However, existing classical diagnosis method of corrosion deteriorated degree on the transmission tower steel members, visual inspection, has a problem that error often due to difference of inspector's individual knowledge and experience. In order to solve the problem, this study carried out to develop the corrosion deterioration inspection tool for transmission tower steel members. This tool is composed of camera equipment and computer-aided diagnosis system. We standardized the photographing method by camera equipment to obtain suitable pictures for image processing. Diagnosis system was designed to evaluate automatically degree of corrosion deterioration for member of transmission tower on the basis of the RGB color image processing techniques. It is anticipated that developed the corrosion deterioration inspection tool will be very helpful in decision of optimal maintenance time for transmission tower corrosion.

Application of 3D Simulation Surgery to Mandibular Asymmetry: Case Report

  • Lee, Sung-Hwa;Lee, Ho-Sung;Jung, Young-Soo;Park, Hyung-Sik;Jung, Hwi-Dong
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.95-98
    • /
    • 2014
  • Two-dimensional cephalometric analysis has been used for diagnosis and treatment of correction of mandibular asymmetry by many maxillofacial surgeons. And 2D analysis showed excellent results in many cases, however 2D has some drawbacks in diagnosis and treatment planning because of its fundamental limitation like overlapping. Today many physicians use 3D diagnosis & treatment tools to expect better results and reduce possible errors. The aim of this report is to present treatment procedures using 3D analysis and treatment modalities for mandibular asymmetry patients.