• Title/Summary/Keyword: Computer-aided Diagnosis

Search Result 162, Processing Time 0.027 seconds

Effect of scanning strategies on the accuracy of digital intraoral scanners: a meta-analysis of in vitro studies

  • Louis Hardan;Rim Bourgi;Monika Lukomska-Szymanska;Juan Carlos Hernandez-Cabanillas;Juan Eliezer Zamarripa-Calderon;Gilbert Jorquera;Sinan Ghishan;Carlos Enrique Cuevas-Suarez
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.6
    • /
    • pp.315-332
    • /
    • 2023
  • PURPOSE. This study aimed to investigate whether the accuracy of intraoral scanners is influenced by different scanning strategies in an in vitro setting, through a systematic review and meta-analysis. MATERIALS AND METHODS. This review was conducted in accordance with the PRISMA 2020 standard. The following PICOS approach was used: population, tooth impressions; intervention, the use of intraoral scanners with scanning strategies different from the manufacturer's instructions; control, the use of intraoral scanners following the manufacturers' requirements; outcome, accuracy of intraoral scanners; type of studies, in vitro. A comprehensive literature search was conducted across various databases including Embase, SciELO, PubMed, Scopus, and Web of Science. The inclusion criteria were based on in vitro studies that reported the accuracy of digital impressions using intraoral scanners. Analysis was performed using Review Manager software (version 5.3.5; Cochrane Collaboration, Copenhagen, Denmark). Global comparisons were made using a standardized mean difference based on random-effect models, with a significance level of α = 0.05. RESULTS. The meta-analysis included 15 articles. Digital impression accuracy significantly improved under dry conditions (P < 0.001). Moreover, trueness and precision were enhanced when artificial landmarks were used (P ≤ 0.02) and when an S-shaped pattern was followed (P ≤ 0.01). However, the type of light used did not have a significant impact on the accuracy of the digital intraoral scanners (P ≥ 0.16). CONCLUSION. The accuracy of digital intraoral scanners can be enhanced by employing scanning processes using artificial landmarks and digital impressions under dry conditions.

Recognition for Lung Cancer using PCA in the Digital Chest Radiography (디지털 흉부영상에서 주성분분석을 이용한 폐암인식)

  • Park, Hyung-Hu;Ok, Chi-Sang;Kang, Se-Sik;Ko, Sung-Jin;Choi, Seok-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1573-1582
    • /
    • 2011
  • Risk of lung cancer among lung-related diseases has gradually increased during last decades. The chest digital radiography is the primary diagnosis method for lung cancer. Diagnosing lung cancer using this method requires doctors of ripe experience. Despite their experience there are often wrong diagnoses, which decrease early diagnosis and survival rates of patients. The aim of this study was intended to establish the base on the Computer Aided Diagnosis (CAD) by analyzing Image Recognition Algorithm using Principle component Analysis (PCA) and diagnosing patient's chest X-ray image. The database obtained through this approach enables a doctor to significantly reduce misdiagnosis during the early diagnosis stage, if he or she utilizes it as the preliminary reading step. Case studies were carried out using normal organ, and organs suffering from bronchogenic carcinoma and granuloma. A normal image and unique disease images were extracted after PCA analysis, and their cross-recognition efficiency were compared each other. The result revealed that the recognition rate was much high between normal and disease images, but relatively low between two disease images. In order to increase the recognition efficiency among chest diseases the related algorithms have to be developed continuously in the future study, and such effort will establish the resolute base for CAD.

Development of Automatic Cluster Algorithm for Microcalcification in Digital Mammography (디지털 유방영상에서 미세석회화의 자동군집화 기법 개발)

  • Choi, Seok-Yoon;Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • Digital Mammography is an efficient imaging technique for the detection and diagnosis of breast pathological disorders. Six mammographic criteria such as number of cluster, number, size, extent and morphologic shape of microcalcification, and presence of mass, were reviewed and correlation with pathologic diagnosis were evaluated. It is very important to find breast cancer early when treatment can reduce deaths from breast cancer and breast incision. In screening breast cancer, mammography is typically used to view the internal organization. Clusterig microcalcifications on mammography represent an important feature of breast mass, especially that of intraductal carcinoma. Because microcalcification has high correlation with breast cancer, a cluster of a microcalcification can be very helpful for the clinical doctor to predict breast cancer. For this study, three steps of quantitative evaluation are proposed : DoG filter, adaptive thresholding, Expectation maximization. Through the proposed algorithm, each cluster in the distribution of microcalcification was able to measure the number calcification and length of cluster also can be used to automatically diagnose breast cancer as indicators of the primary diagnosis.

  • PDF

Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions

  • Young Hoon Chang;Cheol Min Shin;Hae Dong Lee;Jinbae Park;Jiwoon Jeon;Soo-Jeong Cho;Seung Joo Kang;Jae-Yong Chung;Yu Kyung Jun;Yonghoon Choi;Hyuk Yoon;Young Soo Park;Nayoung Kim;Dong Ho Lee
    • Journal of Gastric Cancer
    • /
    • v.24 no.3
    • /
    • pp.327-340
    • /
    • 2024
  • Purpose: Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy. Materials and Methods: We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296). Results: ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%-88.47%), dysplasia (88.31%; 83.24%-93.39%), and benign lesions (83.12%; 77.20%-89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%-93.84%) and 91.43% (86.79%-96.07%), respectively, compared with an accuracy of 60.71% (52.62%-68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%-91.27%), 90.54% (87.21%-93.87%), and 88.85% (85.27%-92.44%), respectively. Conclusions: ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.

3D Generic Vertebra Model for Computer Aided Diagnosis (컴퓨터를 이용한 의료 진단용 3차원 척추 제네릭 모델)

  • Lee, Ju-Sung;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.297-305
    • /
    • 2010
  • Medical image acquisition techniques such as CT and MRI have disadvantages in that the numerous time and efforts are needed. Furthermore, a great amount of radiation exposure is an inherent proberty of the CT imaging technique, a number of side-effects are expected from such method. To improve such conventional methods, a number of novel methods that can obtain 3D medical images from a few X-ray images, such as algebraic reconstruction technique (ART), have been developed. Such methods deform a generic model of the internal body part and fit them into the X-ray images to obtain the 3D model; the initial shape, therefore, affects the entire fitting process in a great deal. From this fact, we propose a novel method that can generate a 3D vertebraic generic model based on the statistical database of CT scans in this study. Moreover, we also discuss a method to generate patient-tailored generic model using the facts obtained from the statistical analysis. To do so, the mesh topologies of CT-scanned 3D vertebra models are modified to be identical to each other, and the database is constructed based on them. Furthermore, from the results of a statistical analysis on the database, the tendency of shape distribution is characterized, and the modeling parameters are extracted. By using these modeling parameters for generating the patient-tailored generic model, the computational speed and accuracy of ART can greatly be improved. Furthermore, although this study only includes an application to the C1 (Atlas) vertebra, the entire framework of our method can be applied to other body parts generally. Therefore, it is expected that the proposed method can benefit the various medical imaging applications.

A study on the digital image transfer application mass chest X-ray system up-grade (간접촬영기의 디지털 영상 변환 장치 적용에 대한 연구)

  • Kim, Sun-Chil;Park, Jong-Sam;Lee, Jon-Il
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.13-17
    • /
    • 2003
  • By converting movable indirect mass chest X-ray devices for vehicles into digital systems and upgrading it to share information with the hospital's medical image information system, excellencies have been confirmed as a result of installing and running this type of system and are listed hereinafter. 1. Upgrading analog systems, such as indirect mass chest X-ray devices dependent on printed film, to digital systems allows them to be run and managed much more efficiently, contributing to the increase in the stability and the efficiency of the system. 2. Unlike existing images, communication based on DICOM standards allow images to be compatible with the hospital's outer and inner network PACS systems, extending the scope of the radiation departments information system. 3. Assuming chest-exclusive indirect mass chest X-rays, a linked development of CAD (Computer Aided Diagnosis, Detector) becomes possible. 4. By applying wireless Internet, Web-PACS for movable indirect mass chest X-ray devices for vehicles will become possible. Research in these fields must continue and if the superior image quality and convenience of digital systems are confirmed, I believe that the conversion of systems still dependent on analog images to modernized digital systems is a must.

  • PDF

Segmentation of Liver Regions in the Abdominal CT Image by Multi-threshold and Watershed Algorithm

  • Kim, Pil-Un;Lee, Yun-Jung;Kim, Gyu-Dong;Jung, Young-Jin;Cho, Jin-Ho;Chang, Yong-Min;Kim, Myoung-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1588-1595
    • /
    • 2006
  • In this paper, we proposed a liver extracting procedure for computer aided liver diagnosis system. Extraction of liver region in an abdominal CT image is difficult due to interferences of other organs. For this reason, liver region is extracted in a region of interest(ROI). ROI is selected by the window which can measure the distribution of Hounsfield Unit(HU) value of liver region in an abdominal CT image. The distribution is measured by an existential probability of HU value of lever region in the window. If the probability of any window is over 50%, the center point of the window would be assigned to ROI. Actually, liver region is not clearly discerned from the adjacent organs like muscle, spleen, and pancreas in an abdominal CT image. Liver region is extracted by the watershed segmentation algorithm which is effective in this situation. Because it is very sensitive to the slight valiance of contrast, it generally produces over segmentation regions. Therefore these regions are required to merge into the significant regions for optimal segmentation. Finally, a liver region can be selected and extracted by prier information based on anatomic information.

  • PDF

Automatic Liver Segmentation Method on MR Images using Normalized Gradient Magnitude Image (MR 영상에서 정규화된 기울기 크기 영상을 이용한 자동 간 분할 기법)

  • Lee, Jeong-Jin;Kim, Kyoung-Won;Lee, Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1698-1705
    • /
    • 2010
  • In this paper, we propose a fast liver segmentation method from magnetic resonance(MR) images. Our method efficiently divides a MR image into a set of discrete objects, and boundaries based on the normalized gradient magnitude information. Then, the objects belonging to the liver are detected by using 2D seeded region growing with seed points, which are extracted from the segmented liver region of the slice immediately above or below the current slice. Finally, rolling ball algorithm, and connected component analysis minimizes false positive error near the liver boundaries. Our method was validated by twenty data sets and the results were compared with the manually segmented result. The average volumetric overlap error was 5.2%, and average absolute volumetric measurement error was 1.9%. The average processing time for segmenting one data set was about three seconds. Our method could be used for computer-aided liver diagnosis, which requires a fast and accurate segmentation of liver.

Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels

  • Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.835-838
    • /
    • 2016
  • Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.

Performance Improvement of Convolutional Neural Network for Pulmonary Nodule Detection (폐 결절 검출을 위한 합성곱 신경망의 성능 개선)

  • Kim, HanWoong;Kim, Byeongnam;Lee, JeeEun;Jang, Won Seuk;Yoo, Sun K.
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.237-241
    • /
    • 2017
  • Early detection of the pulmonary nodule is important for diagnosis and treatment of lung cancer. Recently, CT has been used as a screening tool for lung nodule detection. And, it has been reported that computer aided detection(CAD) systems can improve the accuracy of the radiologist in detection nodules on CT scan. The previous study has been proposed a method using Convolutional Neural Network(CNN) in Lung CAD system. But the proposed model has a limitation in accuracy due to its sparse layer structure. Therefore, we propose a Deep Convolutional Neural Network to overcome this limitation. The model proposed in this work is consist of 14 layers including 8 convolutional layers and 4 fully connected layers. The CNN model is trained and tested with 61,404 regions-of-interest (ROIs) patches of lung image including 39,760 nodules and 21,644 non-nodules extracted from the Lung Image Database Consortium(LIDC) dataset. We could obtain the classification accuracy of 91.79% with the CNN model presented in this work. To prevent overfitting, we trained the model with Augmented Dataset and regularization term in the cost function. With L1, L2 regularization at Training process, we obtained 92.39%, 92.52% of accuracy respectively. And we obtained 93.52% with data augmentation. In conclusion, we could obtain the accuracy of 93.75% with L2 Regularization and Data Augmentation.