• Title/Summary/Keyword: Computer Aided Detection

Search Result 114, Processing Time 0.024 seconds

Analysis of characteristics for computer-aided diagnosis of breast ultrasound imaging (유방 초음파 영상의 컴퓨터 보조 진단을 위한 특성 분석)

  • Eum, Sang-hee;Nam, Jae-hyun;Ye, soo-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.307-310
    • /
    • 2021
  • In the recent years, studies using Computer-Aided Diagnostics(CAD) have been actively conducted, such as signal and image processing technology using breast ultrasound images, automatic image optimization technology, and automatic detection and classification of breast masses. As computer diagnostic technology is developed, it is expected that early detection of cancer will proceed accurately and quickly, reducing health insurance and test ice for patients, and eliminating anxiety about biopsy. In this paper, a quantitative analysis of tumors was conducted in ultrasound images using a gray level co-occurrence matrix(GLCM) to experiment with the possibility of use for computer assistance diagnosis.

  • PDF

Multi-Dimensional Decision Support System for CAD(Computer Aided Diagnosis) (CAD(Computer AidedDiagnosis)의 다차원적인의사결정지원시스템)

  • Jeong, In-Seong;Wang, Ji-Nam
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.13-18
    • /
    • 2004
  • 최근 몇 년간 방사선 의학진단과 관련된 연구가 한층 높아진 가운데 유방암은 여성의 암 중에서 1위를 차지하고 조기에 진단하고 치료하기 위한 국가적인 노력이 필요한 시점이다. 이렇듯 여성들의 유방암 발생빈도수가 급증하면서 대두 되고 있는 것이 조기 진단방법인 Mammography와 초음파 진단이며 그로인하여 발생하는 오진률 역시 많은 연구가 진행 되고 있다. 먼저 Mammography 및 초음파 진단의 문제점 보면 첫째 촬영과정에서의 오차, 둘째 영상의 선명도 ,셋째 전문의의 판독에 대한오차, 넷째 의사의 경험으로 진단함으로 표준화가 존재하지 않는다는 공통적인 문제점을 가지고 있다. 본 연구에서는 CAD 시스템의 프레임웍 및 요소 기술을 제시하여 의사의 진단을 보조적 수행이 보다 수월하도록 하고자 한다. 본 연구에서는 CAD시스템의 기능은 Detection기능(Image enhancement, Morphology, segment detection)과 Diagnosis기능( Neural Natwork등을 이용하여 증상을 판단)이다. 또한 과거 자료를 이용한 변이 및 변화를 예측함으로써 향후 있을 위험요소에 대비가 가능한 모듈과 전문의사가 대화형으로 빠르게 진단지식을 구축할 수 있는 지능형, 대화형 온라인 진단기능을 추가함으로써 외국의 CAD시스템과는 많은 차이가 있다고 볼 수 있다.

  • PDF

Studies and Real-World Experience Regarding the Clinical Application of Artificial Intelligence Software for Lung Nodule Detection (폐결절 검출 인공지능 소프트웨어의 임상적 활용에 관한 연구와 실제 사용 경험)

  • Junghoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.4
    • /
    • pp.705-713
    • /
    • 2024
  • This article discusses studies and real-world experiences related to the clinical application of artificial intelligence-based computer-aided detection (AI-CAD) software (LuCAS-plus, Monitor Corporation) in detecting pulmonary nodules. During clinical trials for lung cancer screening, AI-CAD exhibited performance comparable to that of medical professionals in terms of sensitivity and specificity. Studies revealed that applying AI-CAD for diagnosing pulmonary metastases led to high detection rates. The use of a nodule matching algorithm in diagnosing pulmonary metastases significantly reduced false non-metastasis results. In clinical settings, implementing AI-CAD enhanced the efficiency of pulmonary nodule detection, saving time and effort during CT reading. Overall, AI-CAD is expected to offer substantial support for lung cancer screening and the interpretation of chest CT scans for malignant tumor surveillance.

Does computer-aided diagnostic endoscopy improve the detection of commonly missed polyps? A meta-analysis

  • Arun Sivananthan;Scarlet Nazarian;Lakshmana Ayaru;Kinesh Patel;Hutan Ashrafian;Ara Darzi;Nisha Patel
    • Clinical Endoscopy
    • /
    • v.55 no.3
    • /
    • pp.355-364
    • /
    • 2022
  • Background/Aims: Colonoscopy is the gold standard diagnostic method for colorectal neoplasia, allowing detection and resection of adenomatous polyps; however, significant proportions of adenomas are missed. Computer-aided detection (CADe) systems in endoscopy are currently available to help identify lesions. Diminutive (≤5 mm) and nonpedunculated polyps are most commonly missed. This meta-analysis aimed to assess whether CADe systems can improve the real-time detection of these commonly missed lesions. Methods: A comprehensive literature search was performed. Randomized controlled trials evaluating CADe systems categorized by morphology and lesion size were included. The mean number of polyps and adenomas per patient was derived. Independent proportions and their differences were calculated using DerSimonian and Laird random-effects modeling. Results: Seven studies, including 2,595 CADe-assisted colonoscopies and 2,622 conventional colonoscopies, were analyzed. CADe-assisted colonoscopy demonstrated an 80% increase in the mean number of diminutive adenomas detected per patient compared with conventional colonoscopy (0.31 vs. 0.17; effect size, 0.13; 95% confidence interval [CI], 0.09-0.18); it also demonstrated a 91.7% increase in the mean number of nonpedunculated adenomas detected per patient (0.32 vs. 0.19; effect size, 0.05; 95% CI, 0.02-0.07). Conclusions: CADe-assisted endoscopy significantly improved the detection of most commonly missed adenomas. Although this method is a potentially exciting technology, limitations still apply to current data, prompting the need for further real-time studies.

Computer-Aided Detection of Clustered Microcalcifications using Texture Analysis and Neural Network in Digitized X-ray Mammograms (X-선 유방영상에서 텍스처 분석과 신경망을 이용한 군집성 미세석회화의 컴퓨터 보조검출)

  • 김종국;박정미
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • Clustered microcalcifications on X-ray mammograms are an important sign for early detection of breast cancer. This paper proposes a computer-aided diagnosis method for the detection of clustered microcalcifications and marking their locations on digitized mammograms. The proposed detection method consists of the region of interest (ROI) selection, the film-artifact removal, the surrounding texture analysis method for the detection of clustered microcalcifications, which is based on the second-order histogram in two nested surrounding regions on the current pixel. This paper also describes the effectiveness of the proposed film-artifact removal filter in terms of the classification performance with the receiver operating-characteristics(ROC) analysis. A three-layer backpropagation neural network is employed as a classifier. The appropriate marking for the locations of clustered microcalcifications can be used to alert radiologists to locations of suspicious lesions.

  • PDF

Computer-Aided Diagnosis System for the Detection of Breast Cancer (유방암검출을 위한 컴퓨터 보조진단 시스템)

  • Lee, C.S.;Kim, J.K.;Park, H.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.319-322
    • /
    • 1997
  • This paper presents a CAD (Computer-Aided Diagnosis) system or detection of breast cancer, which is composed of personal computer, X-ray film scanner, high resolution display and application softwares. There are three major algorithms implemented in the application software. The irst algorithm is the adaptive enhancement of the digitized X-ray mammograms based on the first derivative and the local statistics. The second one is to detect the clustered microcalcifications by using the statistical texture analysis, and the third one is the classification of the clustered microcalcifications as malignant or benign by using the shape analysis. These algorithms were verified by real experiments.

  • PDF

Call for a Computer-Aided Cancer Detection and Classification Research Initiative in Oman

  • Mirzal, Andri;Chaudhry, Shafique Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2375-2382
    • /
    • 2016
  • Cancer is a major health problem in Oman. It is reported that cancer incidence in Oman is the second highest after Saudi Arabia among Gulf Cooperation Council countries. Based on GLOBOCAN estimates, Oman is predicted to face an almost two-fold increase in cancer incidence in the period 2008-2020. However, cancer research in Oman is still in its infancy. This is due to the fact that medical institutions and infrastructure that play central roles in data collection and analysis are relatively new developments in Oman. We believe the country requires an organized plan and efforts to promote local cancer research. In this paper, we discuss current research progress in cancer diagnosis using machine learning techniques to optimize computer aided cancer detection and classification (CAD). We specifically discuss CAD using two major medical data, i.e., medical imaging and microarray gene expression profiling, because medical imaging like mammography, MRI, and PET have been widely used in Oman for assisting radiologists in early cancer diagnosis and microarray data have been proven to be a reliable source for differential diagnosis. We also discuss future cancer research directions and benefits to Oman economy for entering the cancer research and treatment business as it is a multi-billion dollar industry worldwide.

Using a Genetic-Fuzzy Algorithm as a Computer Aided Breast Cancer Diagnostic Tool

  • Alharbi, Abir;Tchier, F;Rashidi, MM
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3651-3658
    • /
    • 2016
  • Computer-aided diagnosis of breast cancer is an important medical approach. In this research paper, we focus on combining two major methodologies, namely fuzzy base systems and the evolutionary genetic algorithms and on applying them to the Saudi Arabian breast cancer diagnosis database, to aid physicians in obtaining an early-computerized diagnosis and hence prevent the development of cancer through identification and removal or treatment of premalignant abnormalities; early detection can also improve survival and decrease mortality by detecting cancer at an early stage when treatment is more effective. Our hybrid algorithm, the genetic-fuzzy algorithm, has produced optimized systems that attain high classification performance, with simple and readily interpreted rules and with a good degree of confidence.

A Study of Computer-aided Detection System for Dental Cavity on Digital X-ray Image (디지털 X선 영상을 이용한 치아 와동 컴퓨터 보조 검출 시스템 연구)

  • Heo, Chang-hoe;Kim, Min-jeong;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1424-1429
    • /
    • 2016
  • Segmentation is one of the first steps in most diagnosis systems for characterization of dental caries in an early stage. The purpose of automatic dental cavity detection system is helping dentist to make more precise diagnosis. We proposed the semi-automatic method for the segmentation of dental caries on digital x-ray images. Based on a manually and roughly selected ROI (Region of Interest), it calculated the contour for the dental cavity. A snake algorithm which is one of active contour models repetitively refined the initial contour and self-examination and correction on the segmentation result. Seven phantom tooth from incisor to molar were made for the evaluation of the developed algorithm. They contained a different form of cavities and each phantom tooth has two dental cavities. From 14 dental cavities, twelve cavities were accurately detected including small cavities. And two cavities were segmented partly. It demonstrates the practical feasibility of the dental lesion detection using Computer-aided Detection (CADe).