• Title/Summary/Keyword: Computed unified device architecture

Search Result 7, Processing Time 0.021 seconds

Novel Kernel Design for Implementing Volume Rendering in the PyCUDA Framework (PyCUDA 프레임워크에서 볼륨 렌더링을 구현하기 위한 새로운 커널 디자인)

  • Lee, SooHo;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.349-351
    • /
    • 2022
  • 본 논문에서는 계산양이 큰 볼륨 렌더링을 구현할 수 있는 파이썬 기반의 CUDA(Computed Unified Device Architecture) 커널(Kernel) 디자인에 대해서 소개한다. 최근에 파이썬은 인공지능뿐만 아니라 서버, 보안, GUI, 데이터 시각화, 빅 데이터 처리 등 다양한 분야에서 활용이 되고 있기 때문에 인터페이스만을 위한 언어라는 색을 탈피한지 오래이다. 본 논문에서는 대용량 병렬처리 기법인 NVIDIA의 CUDA를 이용하여 파이썬 환경에서 커널을 디자인하고, 계산양이 큰 볼륨 렌더링이 빠르게 계산되는 결과를 보여준다. 결과적으로 C언어 기반의 CUDA뿐만 아니라, 상대적으로 개발이 효율적인 파이썬 환경에서도 GPU(Graphic Processing Unit)기반 애플리케이션 개발이 가능하다는 것을 볼륨 렌더링을 통해 보여준다.

  • PDF

CUDA-based Fast DRR Generation for Analysis of Medical Images (의료영상 분석을 위한 CUDA 기반의 고속 DRR 생성 기법)

  • Yang, Sang-Wook;Choi, Young;Koo, Seung-Bum
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.285-291
    • /
    • 2011
  • A pose estimation process from medical images is calculating locations and orientations of objects obtained from Computed Tomography (CT) volume data utilizing X-ray images from two directions. In this process, digitally reconstructed radiograph (DRR) images of spatially transformed objects are generated and compared to X-ray images repeatedly until reasonable transformation matrices of the objects are found. The DRR generation and image comparison take majority of the total time for this pose estimation. In this paper, a fast DRR generation technique based on GPU parallel computing is introduced. A volume ray-casting algorithm is explained with brief vector operations and a parallelization technique of the algorithm using Compute Unified Device Architecture (CUDA) is discussed. This paper also presents the implementation results and time measurements comparing to those from pure-CPU implementation and open source toolkit.

Fast Self-Collision Handling in Cloth Simulations Using GPU-based Optimized BVH and R-Triangle (GPU 기반의 최적화된 BVH와 R-Triangle을 이용한 옷감 시뮬레이션에서의 빠른 자기충돌 처리)

  • Moon, Seong-Hyeok;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.373-376
    • /
    • 2022
  • 본 논문에서는 삼각형 메쉬 기반에서 옷감 시뮬레이션(Cloth simulation)에서 계산양이 큰 자기충돌(Self-collision) 처리를 GPU기반으로 가속화시킬 수 있는 방법에 대해 소개한다. CUDA기반으로 병렬 최적화하기 위해 본 논문에서는 1)재귀적으로 계산하여 충돌판정을 하는 BVH(Bounding volume hierarchy) 트리를 GPU기반에서 효율적으로 빌드, 업데이트, 트리 순회하는 방법을 제안하고, 2)삼각형 메쉬 기반에서는 중복되는 프리미티브(Primitive) 충돌검사를 최소화하기 위해 R-Triangle기법을 GPU에서 최적화 시키는 방법을 소개한다. 결과적으로 본 논문에서 제안하는 기법은 GPU 환경에서 옷감 시뮬레이션의 자기충돌과 객체충돌 처리를 빠르고 효율적으로 처리할 수 있도록 하였고, 다양한 장면에서 실험한 결과 모든 결과에서 빠른 시뮬레이션 결과를 얻을 수 있었다.

  • PDF

Fast Access Method of Neighboring Particles Using Bitonic Sort Based GPU Hashing, and Its Applications (바이토닉 정렬 기반의 GPU 해싱을 이용한 인접 입자의 빠른 접근 기법과 그 응용 사례)

  • Lee, SuBin;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.357-360
    • /
    • 2022
  • 본 논문에서는 대용량 데이터에서 빠르게 주변 데이터를 접근하기 위한 자료구조인 최근접 이웃 탐색(Nearest neighbor search, NNS) 문제를 빠르게 풀 수 있는 바이토닉 정렬(Bitonic sort) 기반 해시 테이블을 GPU기반에서 설계하는 방법과 이를 통해 입자 기반 물리 시뮬레이션을 고속화할 수 있는 방법에 대해 살펴본다. 본 논문에서는 CUDA 아키텍처를 이용하여 해시 테이블을 설계하였으며, 계산양이 가장 큰 데이터 정렬부분을 최적화함으로써 NVIDIA에서 제공하는 CUDA 해시 테이블보다 빠른 결과를 얻을 수 있으며, 이 자료구조를 입자 기반 시뮬레이션에 통합함으로써 고성능 시뮬레이션을 쉽게 제작할 수 있다.

  • PDF

Filtering and GPU Optimization to Reliably Express the Exaggeration of 3D Triangular Meshes (3차원 삼각형 메쉬의 과장을 안정적으로 표현할 수 있는 필터링과 GPU 최적화)

  • SuBin Lee;Seong-Hyeok Moon;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.349-352
    • /
    • 2023
  • 본 논문에서는 법선벡터를 이용해 3D 삼각형 메쉬의 형태를 안정적으로 과장하고 GPU 기반으로 새롭게 설계하는 프레임워크를 제안한다. 우리는 High-boost 메쉬 필터링 알고리즘에서의 Aliasing 문제를 양방향 필터를 적용하여 노이지를 제거하고, GPU 기반에서 설계해 고속화한다.

  • PDF

Design of Omok AI using Genetic Algorithm and Game Trees and Their Parallel Processing on the GPU (유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법)

  • Ahn, Il-Jun;Park, In-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.66-75
    • /
    • 2010
  • This paper proposes an efficient method for design and implementation of the artificial intelligence (AI) of 'omok' game on the GPU. The proposed AI is designed on a cooperative structure using min-max game tree and genetic algorithm. Since the evaluation function needs intensive computation but is independently performed on a lot of candidates in the solution space, it is computed on the GPU in a massive parallel way. The implementation on NVIDIA CUDA and the experimental results show that it outperforms significantly over the CPU, in which parallel game tree and genetic algorithm on the GPU runs more than 400 times and 300 times faster than on the CPU. In the proposed cooperative AI, selective search using genetic algorithm is performed subsequently after the full search using game tree to search the solution space more efficiently as well as to avoid the thread overflow. Experimental results show that the proposed algorithm enhances the AI significantly and makes it run within the time limit given by the game's rule.

A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems (방출단층촬영 시스템을 위한 GPU 기반 반복적 기댓값 최대화 재구성 알고리즘 연구)

  • Ha, Woo-Seok;Kim, Soo-Mee;Park, Min-Jae;Lee, Dong-Soo;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.459-467
    • /
    • 2009
  • Purpose: The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Materials and Methods: Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. Results: The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 see, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 see, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. Conclusion: The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries.