• Title/Summary/Keyword: Computed tomography perfusion imaging

Search Result 61, Processing Time 0.024 seconds

Accuracy of Ventricular Volume and Ejection Fraction Measured by Gated Tl-201 Perfusion Single Photon Emission Tomography (심전도 게이트 심근관류 Tl-201 SPECT로 측정된 좌심실 기능 및 좌심실 용적의 정확성)

  • Pai, Moon-Sun;Moon, Dae-Hyuk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.2
    • /
    • pp.94-99
    • /
    • 2005
  • Electrocardiogram-gated single photon omission computed tomography (SPECT) provides valuable information in the assessment of both myocardial perfusion and ventricular function. Tl-201 is a suboptimal isotope for gating. Tl-201 images are more blurred compared with Tc-99m tracers due to the increased amount of scattered photons and use of a smooth filter. The average myocardial count densities are approximately one-half those of conventional technetium tracers. However, Tl-201 is still widely used because of its well-established utility for assessing myocardial perfusion, viability and risk stratification. Gated SPECT with Tl-201 enables us to assess both post-stress and rest left ventricular volume and function. Previous studies with gated Tl-201 SPECT measurements of ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV) have shown high correlation with first-pass radionuclide angiography, gated blood pool scan, Tc-99m-MIBI gated SPECT, contrast ventriculography, echocardiography, and 3-dimensional magnetic resonance imaging. However, problems related to these studies include few agreement data of EDV and ESV, use of a reference method that is likely to have the same systemic errors (gated Tc-99m-MIBI SPECT), and other technical factors related to the count density of gated SPECT. With optimization of gated imaging protocols and more validation studies, gated Tl-201 SPECT would be an accurate method to provide perfusion and function information in patients with coronary artery disease.

Pulling Bowstring of Gated Myocardial SPECT (게이트 심근 SPECT : 도약을 위한 준비)

  • Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.433-435
    • /
    • 1998
  • Recent progress of technology permits us to assess ventricular function and wall motion as well as myocardial perfusion using electrocardiographic gated myocardial perfusion single photon emission computed tomography (GM-SPECT). It is interesting that echocardiography and magnetic resonance imaging are moving in the same direction with the use of contrast medium to assess myocardial perfusion. A valid fundamental basis for a new technology is essential for a successful competition. Lee et al. report in this issue the reproducibility of serial measurement of left ventricular function including systolic wall thickening using a novel statistical method. It has important implications such as nitroglycerin or dobutamine application during GM-SPECT. The field of nuclear cardiology must continue to strive toward more sophisticated but straightforward evaluation of cardiac diseases.

  • PDF

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.3
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.

Clinical Application of Cardiac Hybrid Imaging in Coronary Artery Disease (관상동맥질환에서 심장 하이브리드 영상의 임상적 이용)

  • Gho, Ihn-Ho;Kong, Eun-Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.26 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Constant technological developments in coronary artery disease have contributed to the assessment of both the presence of coronary stenosis and its hemodynamic consequences. Hence, noninvasive imaging helps guide therapeutic decisions by providing complementary information on coronary morphology and on myocardial perfusion and metabolism. This can he done using single photon emission computed tomography (SPECT) or positron emission tomography (PET) and multidetector CT (MDCT). Advances in image-processing software and the advent of SPECT/CT and PET/CT have paved the way for the combination of image datasets from different modalities, giving rise to hybrid imaging. Three dimensional cardiac hybrid imaging helped to confirm hemodynamic significance in many lesions, add new lesions such as left main coronay artery disease, exclude equivocal defects, correct the corresponding arteries to their allocated defects and identify culprit segment. Cardiac hybrid imaging avoids the mental integration of functional and morphologic images and facilitates a comprehensive interpretation of coronaty lesions and their pathophysiologic adequacy by three dimensional display of fused images, and allows the best evaluation of myocardial territories and the coronary-artery branches that serve each territory. This integration of functional and morphological information were feasible to intuitively convincing and might facilitate development of a comprehensive non-invasive assessment of coronary artery disease.

  • PDF

The Usefulness of Deconvolution Perfusion CT in Patients with Acute Cerebral Infarction : Comparison with Diffusion MRI (급성 뇌경색 환자에서 Deconvolution perfusion CT의 유용성 : Diffusion MRI와 비교)

  • Eun, Sung-Jong;Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.25-31
    • /
    • 2003
  • This study was performed to evaluate the usefulness of Deconvolution perfusion CT in patients with acute cerebral infarction. Nine patients with acute cerebral infarction underwent conventional CT and cerebral perfusion CT within 23 hours of the onset of symptoms. The perfusion CT scan for each patient was obtained at the levels of basal ganglia and 1cm caudal to the basal ganglia. By special imaging software, perfusion images including cerebral blood volume(CBV), cerebral blood flow(CBF), and mean transit time(MTT) maps were created. The created lesions were evaluated on each perfusion maps by 3 radiolocical technician. MTT delay time was measured in the perfusion defect lesion and symmetric contralateral normal cerebral hemisphere. Lesion sire were measured on each perfusion map and compared with the value obtained by diffusion weighted MR imaging(DWMRI). All perfusion CT maps showed the perfusion defect lesion in all patients. There were remarkable CT delay in perfusion defect lesion. In comparison of lesion size between each perfusion map and DWMRI, the lesion on CBF map was the most closely correlated with the lesion on DWMRI(7/9). The size of perfusion defect lesion on MTT map was larger than that of lesion on DWMRI, suggesting that m map can evaluate the ischemic penumbra. Deconvolution Perfusion CT maps make it possible to evaluate not only ischemic core and ischemic penumbra but also hemodynamic status in perfusion defect area. These results demonstrate that perfusion CT can be useful to the diagnosis and treatment in the patients with acute cerebral ischemic infarction.

  • PDF

Prediction of Treatment Outcome of Chemotherapy Using Perfusion Computed Tomography in Patients with Unresectable Advanced Gastric Cancer

  • Dong Ho Lee;Se Hyung Kim;Sang Min Lee;Joon Koo Han
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.589-598
    • /
    • 2019
  • Objective: To evaluate whether data acquired from perfusion computed tomography (PCT) parameters can aid in the prediction of treatment outcome after palliative chemotherapy in patients with unresectable advanced gastric cancer (AGC). Materials and Methods: Twenty-one patients with unresectable AGCs, who underwent both PCT and palliative chemotherapy, were prospectively included. Treatment response was assessed according to Response Evaluation Criteria in Solid Tumors version 1.1 (i.e., patients who achieved complete or partial response were classified as responders). The relationship between tumor response and PCT parameters was evaluated using the Mann-Whitney test and receiver operating characteristic analysis. One-year survival was estimated using the Kaplan-Meier method. Results: After chemotherapy, six patients exhibited partial response and were allocated to the responder group while the remaining 15 patients were allocated to the non-responder group. Permeability surface (PS) value was shown to be significantly different between the responder and non-responder groups (51.0 mL/100 g/min vs. 23.4 mL/100 g/min, respectively; p = 0.002), whereas other PCT parameters did not demonstrate a significant difference. The area under the curve for prediction in responders was 0.911 (p = 0.004) for PS value, with a sensitivity of 100% (6/6) and specificity of 80% (12/15) at a cut-off value of 29.7 mL/100 g/min. One-year survival in nine patients with PS value > 29.7 mL/100 g/min was 66.7%, which was significantly higher than that in the 12 patients (33.3%) with PS value ≤ 29.7 mL/100 g/min (p = 0.019). Conclusion: Perfusion parameter data acquired from PCT demonstrated predictive value for treatment outcome after palliative chemotherapy, reflected by the significantly higher PS value in the responder group compared with the non-responder group.

Fast MRI in Acute Ischemic Stroke: Applications of MRI Acceleration Techniques for MR-Based Comprehensive Stroke Imaging

  • You, Sung-Hye;Kim, Byungjun;Kim, Bo Kyu;Park, Sang Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.81-92
    • /
    • 2021
  • The role of neuroimaging in patients with acute ischemic stroke has been gradually increasing. The ultimate goal of stroke imaging is to make a streamlined imaging workflow for safe and efficient treatment based on optimized patient selection. In the era of multimodal comprehensive imaging in strokes, imaging based on computed tomography (CT) has been preferred for use in acute ischemic stroke, because, despite the unique strengths of magnetic resonance imaging (MRI), MRI has a longer scan duration than does CT-based imaging. However, recent improvements, such as multicoil technology and novel MRI acceleration techniques, including parallel imaging, simultaneous multi-section imaging, and compressed sensing, highlight the potential of comprehensive MR-based imaging for strokes. In this review, we discuss the role of stroke imaging in acute ischemic stroke management, as well as the strengths and limitations of MR-based imaging. Given these concepts, we review the current MR acceleration techniques that could be applied to stroke imaging and provide an overview of the previous research on each essential sequence: diffusion-weighted imaging, gradient-echo, fluid-attenuated inversion recovery, contrast-enhanced MR angiography, and MR perfusion imaging.

Post-Coronary Artery Bypass Grafting Myocardial Ischemia Caused by an Overgrown Left Internal Thoracic Artery Side Branch

  • Kim, Eung Re;Oh, Se Jin;Kang, Hyun-Jae;Kim, Ki-Bong
    • Journal of Chest Surgery
    • /
    • v.47 no.5
    • /
    • pp.465-467
    • /
    • 2014
  • We present a patient who developed recurrent angina after coronary artery bypass grafting (CABG). Myocardial single-photon emission computed tomography (SPECT) demonstrated deterioration in the myocardial perfusion, and coronary angiography revealed an overgrown side branch of the grafted left internal thoracic artery (ITA); otherwise, there were no significant changes compared with previous imaging studies obtained after the CABG. After percutaneous embolization of the grafted left ITA side branch, the angina was resolved and myocardial SPECT showed improved perfusion.

Diagnostic imaging features of hepatic myelolipoma incarcerated in a peritoneopericardial diaphragmatic hernia in a cat

  • Lee, Namsoon;Choi, Jihye;Yoon, Junghee
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.42.1-42.6
    • /
    • 2022
  • A 1-year-old male Persian cat was presented for castration. Liver incarcerated in a peritoneopericardial diaphragmatic hernia (PPDH) was diagnosed through pre-anesthetic tests. Multiple homogeneous hyperechoic nodules in the hepatic parenchyma were identified using ultrasound. The nodules showed decreased attenuation compared with normal hepatic parenchyma, and the herniated hepatic parenchyma showed increased arterial and decreased portal enhancement on computed tomography. From the histopathology, we diagnosed hydropic degeneration with portal fibrosis and myelolipoma. This report presents diagnostic imaging features of hepatic myelolipoma incarcerated in a PPDH in a cat. When perfusion of the hepatic parenchyma is altered, surgical treatment should be considered.

Myocardial Coverage and Radiation Dose in Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source CT

  • Masafumi Takafuji;Kakuya Kitagawa;Masaki Ishida;Yoshitaka Goto;Satoshi Nakamura;Naoki Nagasawa;Hajime Sakuma
    • Korean Journal of Radiology
    • /
    • v.21 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Objective: Third-generation dual-source computed tomography (3rd-DSCT) allows dynamic myocardial CT perfusion imaging (dynamic CTP) with a 10.5-cm z-axis coverage. Although the increased radiation exposure associated with the 50% wider scan range compared to second-generation DSCT (2nd-DSCT) may be suppressed by using a tube voltage of 70 kV, it remains unclear whether image quality and the ability to quantify myocardial blood flow (MBF) can be maintained under these conditions. This study aimed to compare the image quality, estimated MBF, and radiation dose of dynamic CTP between 2ndDSCT and 3rd-DSCT and to evaluate whether a 10.5-cm coverage is suitable for dynamic CTP. Materials and Methods: We retrospectively analyzed 107 patients who underwent dynamic CTP using 2nd-DSCT at 80 kV (n = 54) or 3rd-DSCT at 70 kV (n = 53). Image quality, estimated MBF, radiation dose, and coverage of left ventricular (LV) myocardium were compared. Results: No significant differences were observed between 3rd-DSCT and 2nd-DSCT in contrast-to-noise ratio (37.4 ± 11.4 vs. 35.5 ± 11.2, p = 0.396). Effective radiation dose was lower with 3rd-DSCT (3.97 ± 0.92 mSv with a conversion factor of 0.017 mSv/mGy∙cm) compared to 2nd-DSCT (5.49 ± 1.36 mSv, p < 0.001). Incomplete coverage was more frequent with 2nd-DSCT than with 3rd-DSCT (1.9% [1/53] vs. 56% [30/54], p < 0.001). In propensity score-matched cohorts, MBF was comparable between 3rd-DSCT and 2nd-DSCT in non-ischemic (146.2 ± 26.5 vs. 157.5 ± 34.9 mL/min/100 g, p = 0.137) as well as ischemic myocardium (92.7 ± 21.1 vs. 90.9 ± 29.7 mL/min/100 g, p = 0.876). Conclusion: The radiation increase inherent to the widened z-axis coverage in 3rd-DSCT can be balanced by using a tube voltage of 70 kV without compromising image quality or MBF quantification. In dynamic CTP, a z-axis coverage of 10.5 cm is sufficient to achieve complete coverage of the LV myocardium in most patients.