• Title/Summary/Keyword: Computed tomography (CT), three-dimensional

Search Result 275, Processing Time 0.035 seconds

3-Dimensional Computed Tomography of Atlantoaxial Instability in Three Dogs (개에서 컴퓨터단층영상의 3차원 재구성을 통한 환축추골 아탈구 진단 3례)

  • Ahn, Se-Joon;Choi, Soo-Young;Lim, Soo-Ji;An, Ji-Young;Lee, In;Kwon, Young-Hang;Choi, Ho-Jung;Lee, Young-Won
    • Journal of Veterinary Clinics
    • /
    • v.26 no.5
    • /
    • pp.490-494
    • /
    • 2009
  • A 2-year-old Maltese and a 5-month-old Yorkshire terrier were presented with ataxia. Tetraparesis was observed in a 9-year -old Yorkshire terrier. The localizations of the lesions suggested brain or cervical spinal cord by the neurological examination, and the following images was achieved: radiography, axial images of computed tomography (CT), reconstruction image of CT such as multi-planar reformation(MPR) and 3-dimensional(3D) reconstruction and magnetic resonance imaging (MRI). On radiography, the misalignment between atlas (C1) and axis (C2), absent dens of axis, and increased space between the dorsal arch of C1 and spinous process of C2 were found. The discontinuation between dens and body of C2 was identified through axial CT images, and the fragmentation of dens separated from axis was observed through MPR and 3D image in all case. The hyperintense lesions and the spinal cord compression on T2-weighted MR images were represented in a dog with tetraparesis, the others represented only spinal cord compression. Three dogs were diagnosed as atlantoaxial instability (AAI) by dens fracture of C2. The dog with tetraparesis was euthanized due to guarded prognosis. The others were recovered completely. It is difficult to differentiate dens fracture of C2 from abnormal dens such as agenesis and hypoplasia. We thought that CT is very useful to evaluate the dens of C2 and differentiate the causes of AAI, and the reconstruction images of CT such as MPR and 3D make the translation of the fragmented dens or axis of AAI more precisely evaluate.

Use of 3D Printing Model for the Management of Fibrous Dysplasia: Preliminary Case Study

  • Choi, Jong-Woo;Jeong, Woo Shik
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.36-38
    • /
    • 2016
  • Fibrous dysplasia is a relatively rare disease but the management would be quite challenging. Because this is not a malignant tumor, the preservation of the facial contour and the various functions seems to be important in treatment planning. Until now the facial bone reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for facial bone reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile, various types of allogenic and alloplastic materials have been also used. However, facial bone reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original maxillary anatomy as possible using the 3D printing model, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we molded Titanium mesh to reconstruct three-dimensional maxillary structure during the operation. This prefabricated Titanium-mesh implant was then inserted onto the defected maxilla and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be successful in this patient. Individualized approach for each patient could be an ideal way to restore the facial bone.

3D Printed Titanium Implant for the Skull Reconstruction: A Preliminary Case Study

  • Choi, Jong-Woo;Ahn, Jae-Sung
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.99-102
    • /
    • 2014
  • The skull defect can be made after the trauma, oncologic problems or neurosurgery. The skull reconstruction has been the challenging issue in craniofacial fields for a long time. So far the skull reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for skull reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile various types of allogenic and alloplastic materials have been also used. However, skull reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original skull anatomy as possible using the 3D printed titanium implant, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we fabricated Titanium implant to reconstruct three-dimensional orbital structure in advance, using the 3D printer. This prefabricated Titanium-implant was then inserted onto the defected skull and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.

The elimination of the linear artifacts by the metal restorations in the three dimensional computed tomographic images using the personal computer and software (개인용 컴퓨터와 소프트웨어를 이용한 3차원 전산화단층영상에서의 금속 수복물에 의한 선상 오류의 제거)

  • Park Hyok;Lee Hee-Cheol;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.151-159
    • /
    • 2003
  • Purpose: The purpose of this study is to evaluate the effectiveness and usefulness of newly developed personal computer-based software to eliminate the linear artifacts by the metal restorations. Materials and Methods: A 3D CT image was conventionally reconstructed using ADVANTAGE WINDOWS 2.0 3D Analysis software (GE Medical System, Milwaukee, USA) and eliminated the linear artifacts manually. Next, a 3D CT image was reconstructed using V-works 4.0/sup TM/(Cybermed Inc., Seoul, Korea) and the linear artifacts eliminated manually in the axial images by a skillful operator using a personal computer. A 3D CT image was reconstructed using V-works 4.0/sup TM/(Cybermed Inc., Seoul, Korea) and the linear artifacts were removed using a simplified algorithm program to eliminate the linear artifacts automatically in the axial images using a personal computer, abbreviating the manual editing procedure. Finally, the automatically edited reconstructed 3D images were compared to the manually edited images. Results and Conclusion: We effectively eliminated the linear artifacts automatically by this algorithm, not by the manual editing procedures, in some degree. But programs based on more complicated and accurate algorithms may lead to a nearly flawless elimination of these linear artifacts automatically.

  • PDF

The measurement of nose dimensions through the three-dimensional reformation images after nasal bone fracture

  • Jang, Seung Bin;Han, Dong Gil
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 2019
  • Background: After closed reduction, patients are sometimes concerned that their external nasal shapes have changed. The aim of this study was to investigate and explain changes in nasal shape after surgery through objective photogrammetric anthropometry measurements taken through three-dimensional (3D) reformed computed tomography (CT) images. Methods: Our study included 100 Korean patients who underwent closed reduction of isolated nasal bone fracture from January 2016 to June 2017. Using the ruler tool in Adobe Photoshop CS3, we measured preoperative and postoperative nasal base heights, long nostril axis lengths, both nasal alar angles, and amount of nasal deviation through the 3D reformation of soft tissue via CT scans. We then compared the dimension of nose. Results: The amount of postoperative correction for nasal base height was 1.192 mm. The differences in nostril length between each side were found to be 0.333 mm preoperatively and 0.323 mm postoperatively. The differences in the nasal alar angle between each side was $1.382^{\circ}$ preoperatively and $1.043^{\circ}$ postoperatively. The amount of nasal deviation was found to be 5.248 mm preoperatively and 1.024 mm in postoperatively. Conclusion: After the reduction of nasal bone fractures, changes in nasal dimensions were noticeable in terms of nasal deviation but less significant in nasal tips, except for changes in nasal alar angles, which were notable.

Development of pre-procedure virtual simulation for challenging interventional procedures: an experimental study with clinical application

  • Seong, Hyunyoung;Yun, Daehun;Yoon, Kyung Seob;Kwak, Ji Soo;Koh, Jae Chul
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.403-412
    • /
    • 2022
  • Background: Most pain management techniques for challenging procedures are still performed under the guidance of the C-arm fluoroscope although it is sometimes difficult for even experienced clinicians to understand the modified three-dimensional anatomy as a two-dimensional X-ray image. To overcome these difficulties, the development of a virtual simulator may be helpful. Therefore, in this study, the authors developed a virtual simulator and presented its clinical application cases. Methods: We developed a computer program to simulate the actual environment of the procedure. Computed tomography (CT) Digital Imaging and Communications in Medicine (DICOM) data were used for the simulations. Virtual needle placement was simulated at the most appropriate position for a successful block. Using a virtual C-arm, the authors searched for the position of the C-arm at which the needle was visualized as a point. The positional relationships between the anatomy of the patient and the needle were identified. Results: For the simulations, the CT DICOM data of patients who visited the outpatient clinic was used. When the patients revisited the clinic, images similar to the simulated images were obtained by manipulating the C-arm. Transforaminal epidural injection, which was difficult to perform due to severe spinal deformity, and the challenging procedures of the superior hypogastric plexus block and Gasserian ganglion block, were successfully performed with the help of the simulation. Conclusions: We created a pre-procedural virtual simulation and demonstrated its successful application in patients who are expected to undergo challenging procedures.

Three-dimensional assessment of condylar surface changes and remodeling after orthognathic surgery

  • Lee, Jung-Hye;Lee, Woo-Jin;Shin, Jae-Myung;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.46 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • Purpose: This study was performed to evaluate condylar surface changes and remodeling after orthognathic surgery using three-dimensional computed tomography (3D CT) imaging, including comparisons between the right and left sides and between the sexes. Materials and Methods: Forty patients (20 males and 20 females) who underwent multi-detector CT examinations before and after surgery were selected. Three-dimensional images comprising thousands of points on the condylar surface were obtained before and after surgery. For the quantitative assessment of condylar surface changes, point-to-point (preoperative-to-postoperative) distances were calculated using 3D processing software. These point-to-point distances were converted to a color map. In order to evaluate the types of condylar remodeling, the condylar head was divided into six areas (anteromedial, anteromiddle, anterolateral, posteromedial, posteromiddle, and posterolateral areas) and each area was classified into three types of condylar remodeling (bone formation, no change, and bone resorption) based on the color map. Additionally, comparative analyses were performed between the right and left sides and according to sex. Results: The mean of the average point-to-point distances on condylar surface was $0.11{\pm}0.03mm$. Bone resorption occurred more frequently than other types of condylar remodeling, especially in the lateral areas. However, bone formation in the anteromedial area was particularly prominent. No significant difference was found between the right and left condyles, but condylar surface changes in males were significantly larger than in females. Conclusion: This study revealed that condylar remodeling exhibited a tendency towards bone resorption, especially in the lateral areas. Condylar surface changes occurred, but were small.

Application of Virtual Endoscopy in Epiglottic Cyst (가상내시경으로 본 후두개 낭종)

  • Yoo, Young Sam;Choi, Jeong Hwan;Kim, Sang Woo;Woo, Kuk Sung;Kim, Dong Won
    • Korean Journal of Bronchoesophagology
    • /
    • v.17 no.2
    • /
    • pp.108-111
    • /
    • 2011
  • Epiglottic cysts cause stridor mimicking asthma and hinder intubation in surgery. A huge cyst can obstruct the airway, making laryngeal examinations impossible. Before surgery, complete visualization of the larynx is necessary for the successful excision of a cyst. If laryngeal examination fails, computed tomography (CT) scanning can provide detailed information. Virtual endoscopy based on CT data reconstruction can yield a detailed three-dimensional image of the larynx. Here, we report two cases of epiglottic cysts along with virtual endoscopic findings and surgical photographs.

  • PDF

The Need for an Additional Pelvic CT in Cases of Acute Osseous Pelvic Injury that Has Already Been Diagnosed by Abdominal CT. (복부 전산화단층촬영 결과 진단된 급성 외상성 골반골 골절에서 추가적인 3차원 재구성 골반 전산화단층촬영이 필요한가?)

  • Kim, Byoung kwon;Shin, Dong Hyuk;Han, Sang Kuk;Choi, Pil Cho;Lee, Young Han;Park, Ha Young;Bae, Soo Ho;Song, Hyoung Gon
    • Journal of Trauma and Injury
    • /
    • v.22 no.2
    • /
    • pp.206-211
    • /
    • 2009
  • Purpose: Abdominal CT (computed tomography) is a principal diagnostic imaging modality for torso trauma at the Emergency Department (ED). When acute osseous pelvic injuries are detected by abdominal CT, additional three-dimensional (3D) reconstruction pelvic CT is often performed. We compared abdominal CT with pelvic CT to provide information about acute osseous pelvic injuries. Methods: A retrospective investigation of patients'electronic medical records during the five year period between January 1, 2004 and December 31, 2008 among Korean soldiers who underwent pelvic CT after abdominal CT at the ED was conducted. Axial images of abdominal CT were compared with axial images and 3D reconstruction images of pelvic CT. Results: Sixteen patients underwent subsequent pelvic CT after abdominal CT. Axial images of abdominal CT showed the same results in terms of fracture detection and classification when compared to axial images and 3D reconstruction images of pelvic CT. Pelvic CT (including 3D reconstruction images) followed by abdominal CT neither detected additional fracture nor changed the fracture type. Conclusion: This study has failed to show any superiority of pelvic CT (including 3D reconstruction images) over abdominal CT in detecting acute osseous pelvic injury. When 3D information is deemed be mandatory, 3D reconstructions of abdominal CT can be requested rather than obtaining an additional pelvic CT for 3D reconstruction.

Anthropometric Analysis of Facial Foramina in Korean Population: A Three-Dimensional Computed Tomographic Study

  • Lim, Jung-Soo;Min, Kyung-Hee;Lee, Jong-Hun;Lee, Hye-Kyung;Hong, Sung-Hee
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.1
    • /
    • pp.9-13
    • /
    • 2016
  • Background: Position of the facial foramina is important for regional block and for various maxillofacial surgical procedures. In this study, we report on anthropometry and morphology of these foramina using three-dimensional computed tomography (3D-CT) data. Methods: A retrospective review was performed for all patients who have undergone 3D-CT scan of the facial skeleton for reasons other than fracture or deformity of the facial skeleton. Anthropometry of the supraorbital, infraorbital, and mental foramina (SOF, IOF, MF) were described in relation to facial midline, inferior orbital margin, and inferior mandibular margin (FM, IOM, IMM). This data was analyzed according to sex and age. Additionally, infraorbital and mental foramen were classified into 5 positions based on the anatomic relationships to the nearest perpendicular dentition. Results: The review identified 137 patients meeting study criteria. Supraorbital foramina was more often in the shape of a foramen (62%) than that of a notch (38%). The supraorbital, infraorbital, and mental foramina were located 33.7 mm, 37.1 mm, and 33.7 mm away from the midline. The mean vertical distance between IOF and IOM was 13.4 mm. The mean distance between MF and IMM was 21.0 mm. The IOF and MF most commonly coincided with upper and lower second premolar dentition, respectively. Between the sex, the distance between MF and IMM was significantly higher for males than for female. In a correlation analysis, SOF-FM, IOF-FM and MF-FM values were significantly increased with age, but IOF-IOM values were significantly decreased with age. Conclusion: In the current study, we have reported anthropometric data concerning facial foramina in the Korean population, using a large-scale data analysis of three-dimensional computed tomography of facial skeletons. The correlations made respect to patient sex and age will provide help to operating surgeons when considering nerve blocks and periosteal dissections around the facial foramina.