• Title/Summary/Keyword: Computed Tomography (CT) Image

Search Result 661, Processing Time 0.03 seconds

The Correlation Study of the Occurrence of Blooming Artifact according to Dilution Ratio of Contrast Media in CT Angiography (CT Angiography 영상에서 조영제 희석비율에 따른 Blooming Artifact 발생의 상관성 연구)

  • Lee, Su-Seong;Baek, Se-Jun;Seok, Jeong-Yeon;Ryu, Dae-Yeon;Kim, Seong-Jin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2020
  • The purpose of this study is to investigate the correlation of blooming artifacts according to dilution ratio of contrast agent on CT angiography images. A total of 10 sets were prepared by differently setting the ratio of contrast media and saline in a ball phantom made by a 3D printer. CT scan images were obtained and reconstructed by MIP and MPR techniques to obtain axial, sagittal and coronal images, respectively. After, the diameter of the ball phantom of the image obtained after the test was measured each 30 times, a total 1800 times. As a result, the dilution of 20:80 in the coronal plane was the smallest (p<0.05). Similarly, when dilute to 20:80 in the sagittal plane of MIP, it was the smallest as 20.39 ± 0.08 mm (p<0.05). Correlation analysis between dilution ratio and measurement size confirmed strong negative correlations in all reconstructed images (p<0.05). In conclusion, the higher the dilution ratio of the contrast agent, the more difficult it is to measure actual blood vessel measurement. Therefore, this study may provide basic data in future studies on actual measurement.

A Study on the Possibility of Pancreas Detection through Extraction of Effective Atomic Number using a Simulation such as Dual-energy CT (이중에너지 CT와 같은 시뮬레이션을 이용한 유효원자번호 추출을 통한 췌장 검출 가능성 연구)

  • Son, Ki-Hong;Lee, Soo-Yeul;Chung, Myung-Ae;Kim, Dae-Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.537-543
    • /
    • 2022
  • The purpose of this simulation study was to evaluate the possibility of pancreas detection through effective atomic number information using dual-energy computed tomography(CT). The effective atomic number of 10 tissue-equivalent materials were estimated through stoichiometric calibration. For stoichiometric calibration, HU values at low-energy (80 kV) and high-energy (140 kV) for 10 tissue-equivalent materials were used. Based on this method, the effective atomic number image of the tissue-equivalent material was extracted through an iterative algorithm. According to the results, the attenuation ratio in accordance with the effective atomic number was estimated to have an R2 value of 0.9999, and the effective atomic number of Pancreas, Water, Liver, Blood, Spongiosa, and Cortical bone was overall within 1% accuracy compared to the theoretical value. Conventional pancreatic cancer examination uses a contrast medium, so there is a possibility of potential side effects of the contrast medium. In order to solve this problem, it is thought that it will be possible to contribute to an accurate and safe examination by extracting the effective atomic number using dual-energy CT without contrast enhancement. Based on this study, future research will be conducted on the detection of pancreatic cancer using the HU value of pancreatic cancer based on clinical images.

Diagnostic Efficacy and Safety of Low-Contrast-Dose Dual-Energy CT in Patients With Renal Impairment Undergoing Transcatheter Aortic Valve Replacement

  • Suyon Chang;Jung Im Jung;Kyongmin Sarah Beck;Kiyuk Chang;Yaeni Kim;Kyunghwa Han
    • Korean Journal of Radiology
    • /
    • v.25 no.7
    • /
    • pp.634-643
    • /
    • 2024
  • Objective: This study aimed to evaluate the diagnostic efficacy and safety of low-contrast-dose, dual-source dual-energy CT before transcatheter aortic valve replacement (TAVR) in patients with compromised renal function. Materials and Methods: A total of 54 consecutive patients (female:male, 26:38; 81.9 ± 7.3 years) with reduced renal function underwent pre-TAVR dual-energy CT with a 30-mL contrast agent between June 2022 and March 2023. Monochromatic (40- and 50-keV) and conventional (120-kVp) images were reconstructed and analyzed. The subjective quality score, vascular attenuation, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were compared among the imaging techniques using the Friedman test and post-hoc analysis. Interobserver reliability for aortic annular measurement was assessed using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. The procedural outcomes and incidence of post-contrast acute kidney injury (AKI) were assessed. Results: Monochromatic images achieved diagnostic quality in all patients. The 50-keV images achieved superior vascular attenuation and CNR (P < 0.001 in all) while maintaining a similar SNR compared to conventional CT. For aortic annular measurement, the 50-keV images showed higher interobserver reliability compared to conventional CT: ICC, 0.98 vs. 0.90 for area and 0.97 vs. 0.95 for perimeter; 95% limits of agreement width, 0.63 cm2 vs. 0.92 cm2 for area and 5.78 mm vs. 8.50 mm for perimeter. The size of the implanted device matched CT-measured values in all patients, achieving a procedural success rate of 92.6%. No patient experienced a serum creatinine increase of ≥ 1.5 times baseline in the 48-72 hours following CT. However, one patient had a procedural delay due to gradual renal function deterioration. Conclusion: Low-contrast-dose imaging with 50-keV reconstruction enables precise pre-TAVR evaluation with improved image quality and minimal risk of post-contrast AKI. This approach may be an effective and safe option for pre-TAVR evaluation in patients with compromised renal function.

Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction

  • Chuluunbaatar Otgonbaatar;Jae-Kyun Ryu;Jaemin Shin;Ji Young Woo;Jung Wook Seo;Hackjoon Shim;Dae Hyun Hwang
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1044-1054
    • /
    • 2022
  • Objective: This study aimed to investigate whether a deep learning reconstruction (DLR) method improves the image quality, stent evaluation, and visibility of the valve apparatus in coronary computed tomography angiography (CCTA) when compared with filtered back projection (FBP) and hybrid iterative reconstruction (IR) methods. Materials and Methods: CCTA images of 51 patients (mean age ± standard deviation [SD], 63.9 ± 9.8 years, 36 male) who underwent examination at a single institution were reconstructed using DLR, FBP, and hybrid IR methods and reviewed. CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and stent evaluation, including 10%-90% edge rise slope (ERS) and 10%-90% edge rise distance (ERD), were measured. Quantitative data are summarized as the mean ± SD. The subjective visual scores (1 for worst -5 for best) of the images were obtained for the following: overall image quality, image noise, and appearance of stent, vessel, and aortic and tricuspid valve apparatus (annulus, leaflets, papillary muscles, and chordae tendineae). These parameters were compared between the DLR, FBP, and hybrid IR methods. Results: DLR provided higher Hounsfield unit (HU) values in the aorta and similar attenuation in the fat and muscle compared with FBP and hybrid IR. The image noise in HU was significantly lower in DLR (12.6 ± 2.2) than in hybrid IR (24.2 ± 3.0) and FBP (54.2 ± 9.5) (p < 0.001). The SNR and CNR were significantly higher in the DLR group than in the FBP and hybrid IR groups (p < 0.001). In the coronary stent, the mean value of ERS was significantly higher in DLR (1260.4 ± 242.5 HU/mm) than that of FBP (801.9 ± 170.7 HU/mm) and hybrid IR (641.9 ± 112.0 HU/mm). The mean value of ERD was measured as 0.8 ± 0.1 mm for DLR while it was 1.1 ± 0.2 mm for FBP and 1.1 ± 0.2 mm for hybrid IR. The subjective visual scores were higher in the DLR than in the images reconstructed with FBP and hybrid IR. Conclusion: DLR reconstruction provided better images than FBP and hybrid IR reconstruction.

Dose Distribution and Image Quality in the Gantry Aperture for CT Examinations (전산화단층촬영 검사 시 Gantry Aperture 내의 선량분포와 영상의 질)

  • Cho, Pyong-Kon;Kim, You-Hyun;Choi, Jong-Hak;Lee, Ki-Yeol;Kim, Hyung-Cheol;Kim, Jang-Seob;Shin, Dong-Chul;Lee, Sung-Hyun;Lee, Jun-Hyub;Shin, Gwi-Soon
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.453-460
    • /
    • 2009
  • The purpose of this study was to determine the dose distribution and image quality according to slice thickness and BC(beam collimation) in the gantry aperture. CT scans were performed with a 64-slice MDCT(Brilliance 64, Philips, Cleveland, USA) scanner. To determine the dose distribution according to BC, a ionization chamber was placed at isocenter and 5, 10, 15, 20, 25 and 30 cm positions from the isocenter in the 12, 3, 6 and 9 o'clock directions. The dose distribution for phantom scan was also measured using CT head and body dose phantom with five holes at the center of the phantom and the positions of the 12, 3, 6 and 9 o'clock directions. The image noise measurement for different BCs was performed using an AAPM CT phantom. Water-filled block of the phantom was moved by 5 cm or 10 cm to the 12 o'clock direction, and the image noise was measured at the center of the phantom, and the points of 12, 3, 6 and 9 o'clock direction respectively. Some points were placed beyond the scan field of view (SFOV), so that measurement was not possible at that points. The results are as follows: The CTDIw showed a larger decrease as the source goes farther from the iso-center or the BC became wider. The CTDIw depends on the BC width more than the number of the channel of a detector array. The value of CTDIW decreased with increasing BC, but the value decreased 16.6~31.9% in the head phantom scan in air scan and 51.0~64.5% in the body phantom scan. The value of the noise was 3.9~5.9 in the head and 5.3~7.4 in the body except for BC of $2{\times}0.5\;mm$, regardless of the degree of deviation from the iso-center. When a subject was located within the SFOV, the position did not significantly affect image quality even if the subject was out of the center.

  • PDF

Influence of Iodinated Contrast Media and Paramagnetic Contrast Media on Changes in Uptake Counts of 99mTc

  • Cho, Jae-Hwan;Lee, Jin-Hyeok;Park, Cheol-Soo;Lee, Sun-Yeob;Lee, Jin;Moon, Deog-Hwan;Lee, Hae-Kag
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.248-254
    • /
    • 2014
  • The purpose of this study is to figure out how uptake counts of technetium ($^{99m}Tc$) among radioisotopes in the human body are affected if computed tomography (CT), magnetic resonance imaging (MRI) and isotope examination are performed consecutively. $^{99m}Tc$ isotope material, iodinated contrast media for CT and paramagnetic contrast media for magnetic resonance (MR) were used as experimental materials. First, $^{99m}Tc$ was added to 4 cc normal saline in a test tube. Then, 2 cc of CT contrast media such as $Iopamidol^{(R)}$ and $Dotarem^{(R)}$ were diluted with 2 cc normal saline, and 2cc of MRI contrast media such as $Primovist^{(R)}$ and $Gadovist^{(R)}$ were diluted with 2 cc normal saline. Each distributed contrast media was a total of 4 cc and included 10m Ci of $^{99m}Tc$. A gamma camera, a LEHR (Low energy high resolution) collimator and a pin-hole collimator were used for image acquisition. Image acquisition was repeated a total of 6 times and 120 frames were obtained and uptake counts of $^{99m}Tc$ were measured (from this procedure). In this study, as a result of measuring the uptake counts of $^{99m}Tc$ using the LEHR collimator, the uptake counts were less measured in all contrast media than normal saline as a reference. In particular, the lowest uptake counts were measured when $Gadovist^{(R)}$, contrast media for MRI, was used. However, the result of measuring the uptake counts of $^{99m}Tc$ using the pin-hole collimator showed higher uptake counts in all contrast media, except for $Iopamidol^{(R)}$, than normal saline as a reference. The highest uptake counts were measured particularly when $Primovist^{(R)}$, contrast media for MRI, was used. In performing the gamma camera examination using contrast media and $^{99m}Tc$, it is considered significant to check the changes in the uptake counts to improve various diagnosis values.

Factor Analysis of Decreased Score on Coronary Artery Calcium Score (관상동맥 석회화점수 감소 요인 분석)

  • Shim, Jae-Goo;Kim, Yon-Min;Kim, Jin-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.285-290
    • /
    • 2016
  • The purpose of our study was to retrospectively evaluate the cause of a decreased calcium score of follow-up studies on coronary artery calcium scores (CACs) computed tomography (CT). The subjects were healthy 100 people(85 males $60.6{\pm}6.9$ years, 15 females $67.2{\pm}7.3$ years). The subjects decreased CACs were divided into 4 subgroups depending on Agatston classification, minimal (1-10), mild (11-100), moderate (101-400), severe (400<). As a result of decreased CACs were scan location disagreement 51%, motion artifact 26%, equipment changes 14%, operator mistakes 5%, input miss 2%, image loss 1%, arrhythmia 1%. In the mild group, the most common decreased CACs were 49 people. In the minimal group, the most significant variation reduction has occurred to 6 people. Scan location disagreement was considered a partial volume effects due to the scan starting position. It showed less than 100 CACs a high variation (19.7%) in more than 100 CACs, a lower variation (2.2%), these could be seen that the variation range is different that can be tolerated according to the calcification score. Motion artifact factor was found in 26%, which is so closely related to the preceding tests that affect the higher heart rate like this pulmonary function test, exercise stress test.

The convergence study on patient position and exposure dose in abdominal CT examination using AEC (AEC를 적용한 복부 CT 검사 시 환자 자세와 피폭선량에 대한 융합 연구)

  • Lee, Chun-Kyu;Oh, Jeong-Sub;Choi, Seon-Wook;Kim, Gab-Jung;Yoo, Se-Jong;Jeon, Min-Cheol
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.107-113
    • /
    • 2018
  • The purpose of this study was to evaluate the dose and image quality according to the rotation of the X-axis direction in the abdominal CT scan, and to find ways to reduce the exposure dose. The phantom was scanned by rotating in the X-axis direction at 0, 5, 10, and 15 degrees, respectively. The CTDIvol value, HU, noise, and signal-to-noise ratio were measured at each rotation. ANOVA analysis was performed using the SPSSWIN (ver 19.0) program. The radiation exposure dose was 5.44mGy, 5.70mGy, 5.98mGy and 6.38mGy at 0, 5, 10 and 15 degrees, respectively. HU, noise, and signal-to-noise ratio were not statistically significant. In the CT scan, if the patient is located in the isocenter of the gantry aperture and there is no rotation in the X-axis direction, the exposure dose is reduced.

How image-processing parameters can influence the assessment of dental materials using micro-CT

  • Torres, Fernanda Ferrari Esteves;Jacobs, Reinhilde;EzEldeen, Mostafa;de Faria-Vasconcelos, Karla;Guerreiro-Tanomaru, Juliane Maria;dos Santos, Bernardo Camargo;Tanomaru-Filho, Mario
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.161-168
    • /
    • 2020
  • Purpose: The aim of this study was to evaluate the influence of voxel size and different post-processing algorithms on the analysis of dental materials using micro-computed tomography (micro-CT). Materials and Methods: Root-end cavities were prepared in extracted maxillary premolars, filled with mineral trioxide aggregate (MTA), Biodentine, and Intermediate Restorative Material (IRM), and scanned using micro-CT. The volume and porosity of materials were evaluated and compared using voxel sizes of 5, 10, and 20 ㎛, as well as different software tools(post-processing algorithms). The CTAn or MeVisLab/Materialise 3-matic software package was used to perform volume and morphological analyses, and the CTAn or MeVisLab/Amira software was used to evaluate porosity. Data were analyzed using 1-way ANOVA and the Tukey test(P<0.05). Results: Using MeVisLab/Materialise 3-matic, a consistent tendency was observed for volume to increase at larger voxel sizes. CTAn showed higher volumes for MTA and IRM at 20 ㎛. Using CTAn, porosity values decreased as voxel size increased, with statistically significant differences for all materials. MeVisLab/Amira showed a difference for MTA and IRM at 5 ㎛, and for Biodentine at 20 ㎛. Significant differences in volume and porosity were observed in all software packages for Biodentine across all voxel sizes. Conclusion: Some differences in volume and porosity were found according to voxel size, image-processing software, and the radiopacity of the material. Consistent protocols are needed for research evaluating dental materials.

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF