• Title/Summary/Keyword: Computational analysis

Search Result 9,331, Processing Time 0.044 seconds

Aeroelastic Analysis of Bridge Girder Section Using Navier-Stokes Equations (Navier-Stokes 방정식을 이8한 교량 구조물의 공탄성 해석)

  • Park, Sung-Jong;Kwon, Hyuk-Jun;Yoo, Jae-Han;Lee, In;Han, Jae-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.235-242
    • /
    • 2003
  • This paper deals with numerical analysis of static and dynamic wind effects on civil engineering structures. Aeroelastic analysis becomes a prime criterion to be confirmed during the structural design because the long-span suspension bridges are prone to the aerodynamic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. The aeroelastic simulation is carried out using both Computational Fluid Dynamic(CFD) and Computational Structural Dynamic(SCD) schemes.

  • PDF

COMPUTATIONAL INVESTIGATION OF NOZZLE FLOWFIELDS AT VARIOUS FLIGHT CONDITIONS FOR AIRCRAFT INFRARED SIGNATURE ANALYSIS (항공기 IR 신호 분석을 위한 다양한 비행 조건에서의 노즐 열유동장 해석)

  • Chun, S.H.;Yang, Y.R.;Moon, H.;Myong, R.S.;Cho, T.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.15-21
    • /
    • 2011
  • Aerothermodynamic flowfields of aircraft engine nozzles are computationally investigated at various flight conditions for infrared signature analysis. A mission profile of subsonic unmanned combat aerial vehicle is considered for the case study and associated engine and nozzles are selected through a performance analysis. Computational results of nozzle and plume flowfields using a density-based CFD code are analyzed in terms of thrust, maximum temperature, length and optical thickness of plume. It is shown that maximum temperature, length, and optical thickness of nozzle plume increase for lower altitude and higher Mach number.

Pozzolanicity identification in mortars by computational analysis of micrographs

  • Filho, Rafael G.D. Molin;Rosso, Jaciele M.;Volnistem, Eduardo A.;Vanderlei, Romel D.;Longhi, Daniel A.;de Souza, Rodrigo C.T.;Paraiso, Paulo R.;Jorge, Luiz M. de M.
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.175-184
    • /
    • 2021
  • The incorporation of pozzolans to Portland cement pastes adds value in the development of new materials for the construction industry. This study presents a new computational method, complementary to the pozzolanic identification by compressive strength at 28 days method, for supporting the validation of pozzolanic mortars for non-structural purposes. An algorithm capable of classifying the pixels of micrographs of specimens fragments was developed. Therefore, comparative analyses were generated from fractional Gaussian representations in four intervals of the same amplitude that indicated the predispositions to form larger void indices (intervals 1 and 2). The results showed that the computational method indicators are in accordance with the physical and chemical indicators.

Development of Geometrically Nonlinear Finite Element Analysis Examples for Computational Structural Analysis (전산구조해석을 위한 기하학적 비선형 유한요소해석 예제 개발)

  • Na, Won-Bae;Lee, Sun-Min
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.5
    • /
    • pp.699-711
    • /
    • 2012
  • An undergraduate course named computational structural analysis becomes more significant in recent years because of its important role in industries and the recent innovation in computer technology. Typically, the course consists of introduction to finite element method, utilization of general purpose finite element software, and examples focusing on static and linear analyses on various structural members such as a beam, truss, frame, arch, and cable. However, in addition to the static and linear analyses, current industries ask graduates to acquire basic knowledge on structural dynamics and nonlinear analysis, which are not listed in the conventional syllabus of the computational structural analysis. Therefore, this study develops geometrically nonlinear examples, which can help students to easily capture the fundamental nonlinear theory, software manipulation, and problem solving skills. For the purpose, five different examples are found, developed for the analyses of cables and cable nets, which naturally have strong geometrical non-linearity. In the paper, these examples are presented, discussed, and finally compared for a better subject development.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

A Study on Workbench-based Dynamic Service De-sign and Construction of Computational Science Engineering Platform (계산과학공학 플랫폼의 워크벤치 기반 동적 서비스 설계 및 구축에 관한 연구)

  • Kwon, Yejin;Jeon, Inho;Ma, Jin;Lee, Sik;Cho, Kum Won;Seo, Jerry
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.57-66
    • /
    • 2018
  • EDISON ( EDucation-research Integration through Simulation On the Net) is a web simulation service based on cloud compu-ting. EDISON provides that web service and provide analysis result to users through pre-built infrastructure and various calcu-lation nodes computational science engineering problems that are difficult or impossible to analysis as user's personal resources to users. As a result, a simulation execution environment is provided in a web portal environment so that EDISON can be ac-cessed regardless of a user's device or operating system to perform computational science engineering analysis simulation. The purpose of this research is to design and construct a workbench based real - time dynamic service to provide an integrat-ed user interface to the EDSION system, which is a computational science engineering simulation and analysis platform, which is currently provided to users. We also devised a workbench-based user simulation service environment configuration. That has a user interface that is similar to the computational science engineering simulation software environment used locally. It can configure a dynamic web environment such as various analyzers, preprocessors, and simulation software. In order to provide these web services, the service required by the user is configured in portlet units, and as a result, the simulation service using the workbench is constructed.

Analysis about the Initial Process of Learning Transfer in Computational Thinking Education (Computational Thinking 교육에서 나타난 초기 학습전이에 대한 분석)

  • Kim, Soohwan
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.6
    • /
    • pp.61-69
    • /
    • 2017
  • The Goal of SW education is to improve computational thinking. Especially, non computer majors need to apply computational thinking to their problem solving in their fields after computational thinking class. In this paper, we verified what factors affect the improvement of computational thinking through mixed research method after teaching computational thinking to non major students. Also, we analysed the characteristics of initial learning transfer of computational thinking, and establish the reason about he validity and justification for non major in SW education. The result shows learning satisfaction, learning transfer motivation, and self-CT efficacy affect the perception about improvement of computational thinking. Also, we found that there is application of computational thinking was coming up with problem solving process because the initial learning transfer process of computational thinking has characteristics about concepts and practices of it in programming steps. The effectiveness and learning transfer process of computational thinking for non majors will give the validity and justification to teach SW education for all students.

A Study on CFD Result Analysis of Mist-CVD using Artificial Intelligence Method (인공지능기법을 이용한 초음파분무화학기상증착의 유동해석 결과분석에 관한 연구)

  • Joohwan Ha;Seokyoon Shin;Junyoung Kim;Changwoo Byun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.134-138
    • /
    • 2023
  • This study focuses on the analysis of the results of computational fluid dynamics simulations of mist-chemical vapor deposition for the growth of an epitaxial wafer in power semiconductor technology using artificial intelligence techniques. The conventional approach of predicting the uniformity of the deposited layer using computational fluid dynamics and design of experimental takes considerable time. To overcome this, artificial intelligence method, which is widely used for optimization, automation, and prediction in various fields, was utilized to analyze the computational fluid dynamics simulation results. The computational fluid dynamics simulation results were analyzed using a supervised deep neural network model for regression analysis. The predicted results were evaluated quantitatively using Euclidean distance calculations. And the Bayesian optimization was used to derive the optimal condition, which results obtained through deep neural network training showed a discrepancy of approximately 4% when compared to the results obtained through computational fluid dynamics analysis. resulted in an increase of 146.2% compared to the previous computational fluid dynamics simulation results. These results are expected to have practical applications in various fields.

  • PDF

A Boundary-layer Stress Analysis of Laminated Composite Beams via a Computational Asymptotic Method and Papkovich-Fadle Eigenvector (전산점근해석기법과 고유벡터를 이용한 복합재료 보의 경계층 응력 해석)

  • Sin-Ho Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.41-47
    • /
    • 2024
  • This paper utilizes computational asymptotic analysis to compute the boundary layer solution for composite beams and validates the findings through a comparison with ANSYS results. The boundary layer solution, presented as a sum of the interior solution and pure boundary layer effects, necessitates a mathematically rigorous formalization for both interior and boundary layer aspects. Computational asymptotic analysis emerges as a robust technique for addressing such problems. However, the challenge lies in connecting the boundary layer and interior solutions. In this study, we systematically separate the principles of virtual work and the principles of Saint-Venant to tackle internal and boundary layer issues. The boundary layer solution is articulated by calculating the Papkovich-Fadle eigenfunctions, representing them as linear combinations of real and imaginary vectors. To address warping functions in the interior solutions, we employed a least squares method. The computed solutions exhibit excellent agreement with 2D finite element analysis results, both quantitatively and qualitatively. This validates the effectiveness and accuracy of the proposed approach in capturing the behavior of composite beams.

Computational Approach for the Analysis of Post-PKS Glycosylation Step

  • Kim, Ki-Bong;Park, Kie-Jung
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.223-226
    • /
    • 2008
  • We introduce a computational approach for analysis of glycosylation in Post-PKS tailoring steps. It is a computational method to predict the deoxysugar biosynthesis unit pathway and the substrate specificity of glycosyltransferases involved in the glycosylation of polyketides. In this work, a directed and weighted graph is introduced to represent and predict the deoxysugar biosynthesis unit pathway. In addition, a homology based gene clustering method is used to predict the substrate specificity of glycosyltransferases. It is useful for the rational design of polyketide natural products, which leads to in silico drug discovery.