• Title/Summary/Keyword: Computational Structure Dynamics

Search Result 427, Processing Time 0.03 seconds

Computational analysis of coupled fluid-structure for a rotor blade in hover (정지 비행하는 로터 블레이드의 전산 유체-구조 결합 해석)

  • Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1139-1145
    • /
    • 2008
  • numerical study on the coupled fluid-structure for a rotor blade in hover was conducted. Computational fluid dynamics code with enhanced wake-capturing capability is coupled with a simple structural dynamics code based on Euler-Bernoulli's beam equation. The numerical results show a reasonable blade structural deformation and aerodynamic characteristics.

A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow

  • Baudille, Riccardo;Biancolini, Marco Evangelos
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.449-465
    • /
    • 2008
  • In this paper a general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow is presented. The fluid is solved by a general purpose commercial computational fluid dynamics (CFD) package (FLUENT 6.2), while the structure is managed by means of a dedicated finite element method solver, coded in FLUENT as a user-defined function (UDF). A weak fluid structure interaction coupling scheme is adopted exchanging information at the end of each time step. An arbitrary cantilever beam can be introduced in the CFD mesh with its wetted boundaries specified; the cantilever can also interact with specified rigid and flexible walls through use of a non-linear contact algorithm. After a brief review of relevant scientific contributions, some test cases and application examples are presented.

Numerical investigation of flow structures and aerodynamic pressures around a high-speed train under tornado-like winds

  • Simin Zou;Xuhui He;Teng Wu
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.295-307
    • /
    • 2024
  • The funnel-shaped vortex structure of tornadoes results in a spatiotemporally varying wind velocity (speed and direction) field. However, very limited full-scale tornado data along the height and radius positions are available to identify and reliably establish a description of complex vortex structure together with the resulting aerodynamic effects on the high-speed train (HST). In this study, the improved delayed detached eddy simulation (IDDES) for flow structures and aerodynamic pressures around an HST under tornado-like winds are conducted to provide high-fidelity computational fluid dynamics (CFD) results. To demonstrate the accuracy of the numerical method adopted in this study, both field observations and wind-tunnel data are utilized to respectively validate the simulated tornado flow fields and HST aerodynamics. Then, the flow structures and aerodynamic pressures (as well as aerodynamic forces and moments) around the HST at various locations within the tornado-like vortex are comprehensively compared to highlight the importance of considering the complex spatiotemporal wind features in the HST-tornado interactions.

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

Fluid-structure interaction analysis of two-dimensional flow around a moving cylinder (유체-구조 연성 기법을 사용한 움직이는 2차원 실린더 주위의 유동 해석)

  • Lee, Hee-Bum;Rhee, Shin-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.68-74
    • /
    • 2011
  • Recently, thanks to the advanced computational power and numerical methods, it is made possible to analyze the flow around moving bodies using computational fluid dynamics techniques. In those simulations, moving mesh techniques should be able to represent both the body motion and boundary deformation, which are frequently encountered in fluid-structure interaction and/or six degree-of-freedom problems. In the present study, the staggered loosely coupling algorithm was used for fluid-structure interaction and the Laplacian operator based technique was used for moving mesh. For the verification of the developed computational method, the flow around a two-dimensional cylinder was simulated and analyzed.

  • PDF

NUMERICAL REQUIREMENTS FOR THE SIMULATION OF DETONATION CELL STRUCTURES (기체 상 데토네이션 셀 구조 해석을 위한 수치적 요구 조건)

  • Choi, Jeong-Yeol;Cho, Deok-Rae;Lee, Su-Han
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.177-181
    • /
    • 2007
  • Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma}$ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.

  • PDF

Computational Methodology for Biodynamics of Proteins (단백질의 동적특성해석을 위한 전산해석기법 연구)

  • Ahn, Jeong-Hee;Jang, Hyo-Seon;Eom, Kil-Ho;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.476-479
    • /
    • 2008
  • Understanding the dynamics of proteins is essential to gain insight into biological functions of proteins. The protein dynamics is delineated by conformational fluctuation (i.e. thermal vibration), and thus, thermal vibration of proteins has to be understood. In this paper, a simple mechanical model was considered for understanding protein's dynamics. Specifically, a mechanical vibration model was developed for understanding the large protein dynamics related to biological functions. The mechanical model for large proteins was constructed based on simple elastic model (i.e. Tirion's elastic model) and model reduction methods (dynamic model condensation). The large protein structure was described by minimal degrees of freedom on the basis of model reduction method that allows one to transform the refined structure into the coarse-grained structure. In this model, it is shown that a simple reduced model is able to reproduce the thermal fluctuation behavior of proteins qualitatively comparable to original molecular model. Moreover, the protein's dynamic behavior such as collective dynamics is well depicted by a simple reduced mechanical model. This sheds light on that the model reduction may provide the information about large protein dynamics, and consequently, the biological functions of large proteins.

  • PDF

Prediction of Atomic Configuration in Binary Nanoparticles by Genetic Algorithm (유전알고리즘을 이용한 이원계 나노입자의 원자배열 예측)

  • Oh, Jung-Soo;Ryou, Won-Ryong;Lee, Seung-Cheol;Choi, Jung-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.493-498
    • /
    • 2011
  • Optimal atomic configurations in a nanoparticle were predicted by genetic algorithm. A truncated octahedron with a fixed composition of 1 : 1 was investigated as a model system. A Python code for genetic algorithm linked with a molecular dynamics method was developed. Various operators were implemented to accelerate the optimization of atomic configuration for a given composition and a given morphology of a nanoparticle. The combination of random mix as a crossover operator and total_inversion as a mutation operator showed the most stable structure within the shortest calculation time. Pt-Ag core-shell structure was predicted as the most stable structure for a nanoparticle of approximately 4 nm in diameter. The calculation results in this study led to successful prediction of the atomic configuration of nanoparticle, the size of which is comparable to that of practical nanoparticls for the application to the nanocatalyst.

Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade (3차원 축류압축기 블레이드의 유체유발진동 해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yang, Guo Wei;Jung, Kyu-Kang;Kim, Kyung-Hee;Min, Dae-Gee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

Flow-induced Vibration(FIV) Analysis of a 3D Axial Compressor Blade (3차원 축류압축기 블레이드의 유체유발진동 해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yang, Guo Wei;Jung, Kyu-Kang;Kim, Kyung-Hee;Min, Dae-Gee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.551-559
    • /
    • 2009
  • In this study, flow-induced vibration(FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\epsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction(FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.