• 제목/요약/키워드: Computational Simulation

검색결과 4,344건 처리시간 0.03초

Intelligent u-Learning and Research Environment for Computational Science on Mobile Device

  • Park, Sun-Rae;Jin, Duseok;Lee, Jongsuk Ruth;Cho, Kum Won;Lee, Kyu-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.709-722
    • /
    • 2014
  • In the $21^{st}$ century, IT reform has led to the development of cyber-infrastructure owing to the outstanding enhancement of computer and network performance. The ripple effect has continued to increase. Accordingly, this study suggests a new computational research environment using mobile devices. In order to simplify the access of supercomputer, Science AppStore, task management and virtualization technologies are developed on mobile devices. User can be able to research by utilizing computational science SW such as compressible flow solver and nano device simulation tool that in installed on supercomputer in mobile environments. Also, this research environment makes it possible to monitor the simulation result and covers 14 university, 33 subjects, and 1,202 individuals.

전산유체역학을 이용한 셸 구조의 형상에 따른 풍압 평가 (The Evaluation of Wind-induced Pressure for the Shell Structures using Computational Fluid Dynamics)

  • 한상을;박지선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.579-584
    • /
    • 2008
  • The importance and the interest of wind load have emphasized since the damage of the Jeju World cup Stadium and Main Stadium of Busan Asiad in 2002, and the appearance of high-rise buildings. In general, a evaluation for the wind load acting on structures have been carried out mainly through the wind tunnel test, but this technique has the huge shortcomings that consume too much cost and experimental time. However, with the rapid advances on computers, it is possible to analyze the wind pressure distribution acting on structures by numerical scheme. In this paper, to predict the wind pressure distribution acting on shell structures having the various shape by numerical simulation, governing equations of fluid flow and turbulent model is formulated. Also, evaluates the wind pressure coefficient in accordance with the structural shape for shell structures like as a membrane structures and dome structures.

  • PDF

Computational Science-based Research on Dark Matter at KISTI

  • Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.153-159
    • /
    • 2017
  • The Standard Model of particle physics was established after discovery of the Higgs boson. However, little is known about dark matter, which has mass and constitutes approximately five times the number of standard model particles in space. The cross-section of dark matter is much smaller than that of the existing Standard Model, and the range of the predicted mass is wide, from a few eV to several PeV. Therefore, massive amounts of astronomical, accelerator, and simulation data are required to study dark matter, and efficient processing of these data is vital. Computational science, which can combine experiments, theory, and simulation, is thus necessary for dark matter research. A computational science and deep learning-based dark matter research platform is suggested for enhanced coverage and sharing of data. Such an approach can efficiently add to our existing knowledge on the mystery of dark matter.

Investigation on the nonintrusive multi-fidelity reduced-order modeling for PWR rod bundles

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Chu, Tianhui
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1825-1834
    • /
    • 2022
  • Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.

배수지의 배수효율분석을 위한 추적자실험 및 전산유체해석 (Tracer Experiment and Computational Fluid Dynamics Analysis for the Drainage Efficiency of a Reservoir)

  • 조중연;고선호;곽이구
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.22-27
    • /
    • 2017
  • During the water treatment process for household water supply, a reservoir is the last place the water is stored before being supplied to users, and the duration of the water's stay is an important factor that affects its safety. This may cause the concentration of the residual chlorine disinfectant to increase and thus lower the water's quality. The concentration and discharge efficiency of residual chlorine must be verified and managed, because these are key factors that affect the reservoir's performance. Because the actual verification test for analyzing the efficiency of a reservoir and the disinfectant's dilution capacity is difficult, simulations are generally conducted using the computational fluid analysis method. However, the simulation results require validation with experiments. The error and drainage efficiency were analyzed in this study by comparing and analyzing the actual tracer test and simulation so that the actual test for a hexagonal drainage can be replaced by the computational fluid analysis method. Based on the results of the efficiency analysis, the hexagonal reservoir was found to be appropriate, and the simulation's reliability was verified with a tracer test.

개선된 평가점 선정기법을 이용한 응답면기법 (Improved Response Surface Method Using Modified Selection Technique of Sampling Points)

  • 김상효;나성원;황학주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.248-255
    • /
    • 1993
  • Recently, due to the increasing attention to the structural safety under uncertain environments, many researches on the structural reliability analysis have been peformed. Some useful methods are available to evaluate performance reliability of structures with explicit limit states. However, for large structures, in which structural behaviors can be analyzed with finite element models and the limit states are only expressed implicitly, Monte-Carlo simulation method has been mainly used. However, Monte-Carlo simulation method spends too much computational time on repetitive structural analysis. Many alternative methods are suggested to reduce the computational work required in Monte-Carlo simulation. Response surface method is widely used to improve the efficiency of structural reliability analysis. Response surface method is based on the concept of approximating simple polynomial function of basic random variables for the limit state which is not easily expressed in explicit forms of design random variables. The response surface method has simple algorithm. However, the accuracy of results highly depends on how properly the stochastic characteristics of the original limit state has been represented by approximated function, In this study, an improved response surface method is proposed in which the sampling points for creating response surface are modified to represent the failure surface more adequately and the combined use of a linear response surface function and Rackwitz-Fiessler method has been employed. The method is found to be more effective and efficient than previous response surface methods. In addition more consistent convergence is achieved, Accuracy of the proposed method has been investigated through example.

  • PDF

3차원 시뮬레이션을 활용한 PSC 박스거더교 세그먼트 제작 공정의 검증 (Verification of Manufacturing Process of PSC Box Girder Bridge Segment by 3D Simulation)

  • 김민석;손흥락;이광명;박영하;박민석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.235-240
    • /
    • 2008
  • PSC box girder bridges are built through the repetitive manufacturing process of concrete segment. However, during the initial segment manufacturing stage, design change may occur frequently due to design errors and interferences between components, resulting in the extension of segment manufacturing period. This paper aims to verify the manufacturing process of PSC box girder segment by 3D simulation technique. All the components of a segment were modelled and assembled by simulation technique and then, some design errors were found and revised appropriately to optimize the manufacturing process of segment. Consequently, 3D simulation technique would be promising to improve the quality of the segment and to reduce its manufacturing time and cost.

  • PDF

DES 방법을 이용한 비압축성 열린 공동 유동의 수치적 모사 (DETACHED EDDY SIMULATION OF AN INCOMPRESSIBLE FLOW PAST AN OPEN CAVITY)

  • 장경식;박승오;권오준
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.48-54
    • /
    • 2005
  • Three-dimensional incompressible flow past an open cavity in a channel is investigated using Detached Eddy Simulation(DES). The length to depth ratio of the cavity is 2 and the Reynolds number defined with the cavity depth is 3,360. The DES methods are based on the Menter's SST model. In the present work, two types of inflow conditions are used: one is RANS profile, the other is LES inflow from another Large Eddy Simulation(LES) of fully developed channel flow. The results are compared with experimental data and LES results in terms of the mean statistics, temporal physics and scalar transport phenomenon of the flow.

이산사건 시뮬레이션과 유전자 알고리즘을 이용한 제조업 공장의 라인 최적화 (Manufacturing Line Optimization for Discrete Event Simulation and Genetic Algorithm)

  • 정영수;임현준;지해성;이광국
    • 한국CDE학회논문집
    • /
    • 제13권1호
    • /
    • pp.67-75
    • /
    • 2008
  • In spite of rapidly increasing interests in digital manufacturing, there still lacks of a systematic approach in manufacturing line flow analysis via modeling and simulation; currently, the parameters for designing manufacturing line are defined by being solely based on engineers experiences. The paper proposes an application of the genetic algorithm to a discrete event line simulation finding optimal set of parameters for manufacturing line balancing problem. The proposed method has been applied to two example problems-one is a simple manufacturing model and the other for shipyard industry-in order to demonstrate its validity and usefulness.

CFD 시뮬레이션을 이용한 풍하중 산정 시 변동풍속 프로파일에 관한 연구 (A Study on Fluctuating Wind Profile in CFD Simulation for Evaluating Wind Load)

  • 전두진;한상을
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.51-59
    • /
    • 2021
  • In this paper, the effect of the turbulence intensity in across-wind direction on the wind load in CFD(Computational fluid dynamics) simulation was analyzed. 'Ansys fluent' software was used for CFD simulation. And the fluctuating wind speed applied to the simulation was generated according to Korean Design Standard and Von Karman wind turbulence model. The turbulence intensity in across-wind direction for simulation was applied from 0 to 100% of the turbulence intensity in along-wind direction. The analysis results showed that the turbulence intensity in across-wind direction had a particularly great effect on the wind load in across-wind direction.