• 제목/요약/키워드: Computational Simulation

검색결과 4,363건 처리시간 0.036초

CFD Simulation of Multiphase Flow by Mud Agitator in Drilling Mud Mixing System

  • Kim, Tae-Young;Jeon, Gyu-Mok;Park, Jong-Chun
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.121-130
    • /
    • 2021
  • In this study, a computational fluid dynamics (CFD) simulation based on an Eulerian-Eulerian approach was used to evaluate the mixing performance of a mud agitator through the distribution of bulk particles. Firstly, the commercial CFD software Star-CCM+ was verified by performing numerical simulations of single-phase water mixing problems in an agitator with various turbulence models, and the simulation results were compared with an experiment. The standard model was selected as an appropriate turbulence model, and a grid convergence test was performed. Then, a simulation of the liquid-solid multi-phase mixing in an agitator was simulated with different multi-phase interaction models, and lift and drag models were selected. In the case of the lift model, the results were not significantly affected, but Syamlal and O'Brien's drag model showed more reasonable results with respect to the experiment. Finally, with the properly determined simulation conditions, a multi-phase flow simulation of a mud agitator was performed to predict the mixing time and spatial distribution of solid particles. The applicability of the CFD multi-phase simulation for the practical design of a mud agitator was confirmed.

REGENERATIVE BOOTSTRAP FOR SIMULATION OUTPUT ANALYSIS

  • Kim, Yun-Bae
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 춘계 학술대회 논문집
    • /
    • pp.169-169
    • /
    • 2001
  • With the aid of fast computing power, resampling techniques are being introduced for simulation output analysis (SOA). Autocorrelation among the output from discrete-event simulation prohibit the direct application of resampling schemes (Threshold bootstrap, Binary bootstrap, Stationary bootstrap, etc) extend its usage to time-series data such as simulation output. We present a new method for inference from a regenerative process, regenerative bootstrap, that equals or exceeds the performance of classical regenerative method and approximation regeneration techniques. Regenerative bootstrap saves computation time and overcomes the problem of scarce regeneration cycles. Computational results are provided using M/M/1 model.

  • PDF

대와동모사법을 사용한 고속로 상부플레넘에서의 thermal sriping 해석 (LARGE EDDY SIMULATION OF THERMAL STRIPING IN THE UPPER PLENUM OF FAST REACTOR)

  • 최석기;한지웅;김대희;이태호
    • 한국전산유체공학회지
    • /
    • 제19권4호
    • /
    • pp.29-36
    • /
    • 2014
  • A computational study of a thermal striping in the upper plenum of PGSFR(Prototype Generation-IV Sodium-cooled Fast Reactor) being developed at the KAERI(Korea Atomic Energy Research Institute) is presented. The LES(Large Eddy Simulation) approach is employed for the simulation of thermal striping in the upper plenum of the PGSFR. The LES is performed using the WALE (Wall-Adapting Local Eddy-viscosity) model. More than 19.7 million unstructured elements are generated in upper plenum region of the PGSFR using the CFX-Mesh commercial code. The time-averaged velocity components and temperature field in the complicated upper plenum of the PGSFR are presented. The time history of temperature fluctuation at the eight locations of solid walls of UIS(Upper Internal Structure) and IHX(Intermediate Heat eXchanger) are additionally stored. It has been confirmed that the most vulnerable regions to thermal striping are the first plate of UIS. From the temporal variation of temperature at the solid walls, it was possible to find the locations where the thermal stress is large and need to assess whether the solid structures can endure the thermal stress during the reactor life time.

SPECT Image Analysis Using Computational ROC Curve Based on Threshold Setup

  • Kim, Moo-Sub;Shin, Han-Back;Kim, Sunmi;Shim, Jae Goo;Yoon, Do-Kun;Suh, Tae Suk
    • 한국의학물리학회지:의학물리
    • /
    • 제28권3호
    • /
    • pp.77-82
    • /
    • 2017
  • We proposed the objective ROC analysis method based on the setting of threshold value for evaluation of single photon emission computed tomography (SPECT) image. This proposed ROC analysis method uses the quantification computational threshold value to each signal on the SPECT image. The SPECT images for this study were acquired by using Monte Carlo n-particle extended simulation code (MCNPX, Ver. 2.6.0, Los Alamos National Laboratory, USA). The basic SPECT detectors and specific water phantom were realized in the simulation, and we could get the simulation results by the simulation operation. We tried to analyze the reconstructed images using threshold value application based objective ROC method. We can get the accuracy information of reconstructed region in the image. This proposed ROC technique can be helpful when we have to evaluate the weak signal for the NM image. In this study, the proposed threshold value based computational ROC analysis method can provide better objectivity than the conventional ROC analysis method.

Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model

  • Hu, Peng;Li, Yongle;Cai, C.S.;Liao, Haili;Xu, G.J.
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.87-105
    • /
    • 2013
  • Modeling an equilibrium atmospheric boundary layer (ABL) in an empty computational domain has routinely been performed with the k-${\varepsilon}$ turbulence model. However, the research objects of structural wind engineering are bluff bodies, and the SST k-${\omega}$ turbulence model is more widely used in the numerical simulation of flow around bluff bodies than the k-${\varepsilon}$ turbulence model. Therefore, to simulate an equilibrium ABL based on the SST k-${\omega}$ turbulence model, the inlet profiles of the mean wind speed U, turbulence kinetic energy k, and specific dissipation rate ${\omega}$ are proposed, and the source terms for the U, k and ${\omega}$ are derived by satisfying their corresponding transport equations. Based on the proposed inlet profiles, numerical comparative studies with and without considering the source terms are carried out in an empty computational domain, and an actual numerical simulation with a trapezoidal hill is further conducted. It shows that when the source terms are considered, the profiles of U, k and ${\omega}$ are all maintained well along the empty computational domain and the accuracy of the actual numerical simulation is greatly improved. The present study could provide a new methodology for modeling the equilibrium ABL problem and for further CFD simulations with practical value.