• 제목/요약/키워드: Computational Fluid Dynamics Analysis

검색결과 1,522건 처리시간 0.031초

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • 공업화학
    • /
    • 제33권6호
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.

전산유체역학 병렬해석을 위한 클러스터 네트웍 장치 성능분석 (Performance Analysis of Cluster Network Interfaces for Parallel Computing of Computational Fluid Dynamics)

  • 이보성;홍정우;이동호;이상산
    • 한국항공우주학회지
    • /
    • 제31권5호
    • /
    • pp.37-43
    • /
    • 2003
  • 전산유체역학분야에서의 효율적인 해석을 위해서 병렬처리기법이 널리 사용되고 있다. 병렬처리기법과 함께 최근에는 저가의 리눅스 클러스터 컴퓨터들이 기존의 슈퍼컴퓨터들을 대체하는 추세이다. 리눅스 클러스터 컴퓨터에서 수행되는 해석프로그램의 성능은 클러스터 시스템의 프로세서 성능 뿐 아니라 클러스터 시스템에서 사용되는 네트웍 장비의 성능에 크게 영향을 받는다. 본 연구에서는 미리넷2000, 기가비트 이더넷, 패스트 이더넷 등 네트웍 장비에 따라서 클러스터 시스템의 성능이 어떻게 달라지는지를 Netpipe, LINPACK, NAS NPB, 그리고 MIPNS2D Navier-Stokes 해석프로그램을 사용하여 비교하였다. 이러한 연구결과를 바탕으로 전산유체역학 분야에서 사용될 고성능 저비용 리눅스 클러스터 시스템을 구축하는 방법을 제시하고자 하였다.

CFD를 이용한 도심내 드론 비행 경로 계획 및 안전성 평가 (CFD-based Path Planning and Flight Safety Assessment for Drone Operation in Urban Areas)

  • 김건홍;황아영;김효영;김연명
    • 항공우주시스템공학회지
    • /
    • 제18권2호
    • /
    • pp.40-46
    • /
    • 2024
  • 본 연구는 도심 지역에서 드론 비행 경로의 계획과 안전성 평가를 개선하기 위해 CFD(Computational Fluid Dynamics)를 활용하는 방법을 제시한다. 도심 지역에서의 드론 비행은 빠르게 증가하고 있는데, 아직 경로 계획 및 안전성 평가 방법이 정립되어 있지 않으며 실험적으로 접근하고 있어 위험성이 높은 문제가 있다. 이에 본 연구에서는 CFD를 활용하여 드론과 건물 간 복잡한 3D 공간에서의 유체 역학을 고려한 비행 경로를 계획하고, 각 경로의 안전성을 정량적으로 평가하였다. 이를 위해 김천 혁신도시를 대상 지역으로 설정하여 지형과 건물 데이터 수집 및 비행 예상 경로를 선정하였다. CFD 유동 해석을 통해 비행 시뮬레이션과 안전성 평가를 위한 기본 데이터를 마련하였으며 이를 통해 드론이 제안된 비행 경로로 비행하였을 때 환경 유동에 의한 안전성 평가를 수행하였다.

극저온 가스와 MQL(minimum quantity lubrication)의 복합 분사를 위한 하이브리드 노즐 설계에 관한 전산유체역학 해석 (Analysis of computational fluid dynamics on design of nozzle for integrated cryogenic gas and MQL(minimum quantity lubrication))

  • 송기혁;신봉철;윤길상;하석재
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.41-47
    • /
    • 2019
  • In conventional machining, the use of cutting fluid is essential to reduce cutting heat and to improve machining quality. However, to increase the performance of cutting fluids, various chemical components have been added. However, these chemical components during machining have a negative impact on the health of workers and cutting environment. In current machining, environment-friendly machining is conducted using MQL (minimum quantity lubrication) or cryogenic air spraying to minimize the harmful effects. In this study, the injection nozzle that can combined injecting minimum quantity lubrication(MQL) and cryogenic gas was designed and the shape optimization was performed by using computational fluid dynamics(CFD) and design of experiment(DOE). Performance verification was performed for the designed nozzle. The diameter of the sprayed fluid at a distance of 30 mm from the nozzle was analyzed to be 21 mm. It was also analyzed to lower the aerosol temperature to about 260~270K.

KSR-III 로켓 노즐의 열화학적 성능해석 (Thermochemical Performance Analysis of KSR-III Rocket Nozzle)

  • 최정열;최환석;김영목
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.90-98
    • /
    • 2001
  • Characteristics of high temperature rocket nozzle flow is discussed along with the aspects of computational analysis. Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were discussed, those were coupled with the methods of computational fluid dynamics code. A chemical equilibrium code developed for the analysis of general hydrocarbon fuel was coupled with three approaches of nozzle flow analysis. The approaches were used for the performance prediction of KSR-III Rocket, and compared with the theoretical results from NASA CEA (Chemical Equilibrium with Applications) code.

  • PDF

정지 비행하는 로터 블레이드의 전산 유체-구조 결합 해석 (Computational analysis of coupled fluid-structure for a rotor blade in hover)

  • 김해동
    • 한국항공우주학회지
    • /
    • 제36권12호
    • /
    • pp.1139-1145
    • /
    • 2008
  • 로터 블레이드의 구조변형을 포함한, 제자리 비행하는 로터 블레이드의 공력해석을 수행하였다. 와류포획능력을 향상시킨 전산유체 코드와 간단한 오일러-베르누이 보 모델에 기반을 둔 구조역학 방정식을 결합시켜 회전익 유동에 대한 연계 계산을 수행하였으며 계산결과 타당한 로터블레이드 구조변형 및 공력특성을 얻었다.

Computational Approaches for the Aerodynamic Design and Optimization

  • Lee, Jae-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.28-29
    • /
    • 2006
  • Computational approaches for the aerodynamic design and optimization are introduced. In this paper the aerodynamic design methods and applications, which have been applied to various aerospace vehicles at Konkuk University, are introduced. It is shown that system approximation technique reduces computational cost for CFD analysis and improves efficiency for the design optimization process.

  • PDF

CFD분석을 통한 기류식 분쇄기 날개부의 최적설계 (Optimum Design for an Air Current Pulverizing Blade Using the Computational Fluid Dynamics)

  • 김건회;김한빛
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.8-14
    • /
    • 2020
  • In the air current pulverizing type grinding method, the blade wings fitted inside a casing are rotated at a high speed to generate a cornering air current, which facilitates the collision of materials with one another, leading to the pulverizing phenomenon. In contrast to mechanical grinding, grit pulverizing leads to fine grinding and less acid waste and degeneration of the material. Moreover, this approach prevents the loss of nutritional value, while allowing the milling grain to have an excellent texture. However, the existing air current pulverizing type machines consist of prefabricated blades, which cannot be rotated at a speed higher than 5,000 rpm. Consequently, the grinding process becomes time consuming with a low productivity. To overcome these problems, in this study, the shape and structure of the air current pulverizing type wings were optimized to allow rapid grinding at more than 8,000 rpm. Moreover, the optimal design for the ripening parts for the air current pulverizing type device was determined by performing a computational fluid dynamics analysis based on airflow analyses to produce machinery that can grinding materials to the order of micrometers.

CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구 (A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis)

  • 정태환;;;이승건
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • 제1권2호
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF