• Title/Summary/Keyword: Computational Chemistry

Search Result 224, Processing Time 0.033 seconds

Time-frequency analysis of reactor neutron noise under bubble disturbance and control rod vibration

  • Yuan, Baoxin;Guo, Simao;Yang, Wankui;Zhang, Songbao;Zhong, Bin;Wei, Junxia;Ying, Yangjun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1088-1099
    • /
    • 2021
  • Time-frequency analysis technique is an effective analysis tool for non-stationary processes. In the field of reactor neutron noise, the time-frequency analysis method has not been thoroughly researched and widely used. This work has studied the time-frequency analysis of the reactor neutron noise experimental signals under bubble disturbance and control rod vibration. First, an experimental platform was established, and it could be employed to reactor neutron noise experiment and data acquisition. Secondly, two types of reactor neutron noise experiments were performed, and valid experimental data was obtained. Finally, time-frequency analysis was conducted on the experimental data, and effective analysis results were obtained in the low-frequency part. Through this work, it can be concluded that the time-frequency analysis technique can effectively investigate the core dynamics behavior and deepen the identification of the unstable core process.

Luminescence Wavelength Control of $CaAlSiN_3:Eu^{2+}$ by Ca-replacing: Computational and Experimental Study

  • Onuma, Hiroaki;Suehiro, Takayuki;Suzuki, Ai;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kubo, Momoji;Sato, Tsugio;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.290-293
    • /
    • 2009
  • We both theoretically and experimentally investigated the luminescence wavelength control of the $Eu^{2+}$-doped $CaAlSiN_3$ (CASN:$Eu^{2+}$). To modify emission wavelength, Na-doped and Mg-doped CASN:$Eu^{2+}$ (NCASN:$Eu^{2+}$ and MCASN:$Eu^{2+}$) have been studied. According to quantum chemistry calculation result, we synthesized NCASN:$Eu^{2+}$ and MCASN:$Eu^{2+}$. NCASN:$Eu^{2+}$ and MCASN:$Eu^{2+}$ showed shorter emission wavelength than that of CASN:$Eu^{2+}$.

  • PDF

Effects of Oxygen and Alkaline Earth Atoms on Emission Wavelength of $Eu^{2+}$-doped Oxide Phosphor: A Computational Chemistry Study

  • Onuma, Hiroaki;Yamashita, Itaru;Serizawa, Kazumi;Suzuki, Ai;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kubo, Momoji;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.294-297
    • /
    • 2009
  • We computationally investigated the effects of oxygen and alkaline-earth on the emission wavelength of the $Eu^{2+}$-doped oxide phosphor. Using QSPR method, we found that the oxygen and alkaline-earth atom around the Eu atom increase and decrease the emission wavelength, respectively. We also investigated the $Eu^{2+}$-doped sulfide, nitride, and oxynitride phosphors.

  • PDF

Computational Study of Human Calcitonin (hCT) Oligomer

  • Pak, Young-Shang;Shin, Jung-Ho;Jang, Soon-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3006-3010
    • /
    • 2009
  • We have performed long time REMD simulation on 15-19 residues of human calcitonin hormone (DFNKF) which is known to form highly ordered amyloid fibril. The simulation started from randomly oriented multiple DFNKF strand. Using all-atom level simulations with the generalized Born solvation (GB) model (param99MOD3), we observed spontaneous formation of ${\beta}$-sheet for tetramer. Interestingly, the current simulation gives anti-parallel sheet as a major conformation, consistent with experiments. The major interaction stabilizing the anti-parallel sheet seems to be the inter-strand hydrogen bond.

Design and Implementation of Information Management Tools for the EDISON Open Platform

  • Ma, Jin;Lee, Jongsuk Ruth;Cho, Kumwon;Park, Minjae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1089-1104
    • /
    • 2017
  • We have developed an information management tool for the EDISON (EDucation-research Integration through Simulation On the Net) open platform. EDISON is, at present, a web-based simulation service for education and research in five computational areas, namely, nanophysics, fluid dynamics, chemistry, structural dynamics, and computer aided optimal design. The EDISON open platform consists of three tiers: EDISON application framework, EDISON middleware, and EDISON infra-resources. The platform provides web portals for education and research in areas such as computational fluid dynamics, computational chemistry, computational nanophysics, computational structural dynamics, and computer aided optimal design along with user service. The main purpose of this research is to test the behavior of the release version of the EDISON Open-Platform under normal operating conditions. This management tool has been implemented using the RESTful API designed in EDISON middleware. The intention is to check co-operation between the middleware and the infrastructure. Suggested tools include User management, Simulation and Job management, and Simulation software (i.e., solver) testing. Finally, it is considered meaningful to develop a management tool that is not supported in other web-based online simulation services.

Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

  • Lee, Weon-Gyu;Kelly, Aaron;Rhee, Young-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.933-940
    • /
    • 2012
  • Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic lightharvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density.

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.