• Title/Summary/Keyword: Computational Aerodynamics

Search Result 178, Processing Time 0.027 seconds

Study of aerodynamic characteristic for a pantograph for Tilting train eXpress (TTX) (고속 틸팅열차의 틸팅 판토그라프 공력 특성 연구)

  • Ko T. H.;Kim G. N.;Goo D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.177-180
    • /
    • 2004
  • The development of a tilting train with construction of electric line on the conventional railway is required for speed-up on the conventional railway with many curving sections. For development of tilting train, the study and development of the tilting system and tilting bogie having the different mechanism with a general high speed train will play a main role for improving the technology in the field of Korean railway The study and development of the pantograph tilting mechanism in order to keep a good contact behavior between a pantograph and a contact wire by tilting a pantograph on the opposite direction of the vehicle tilting direction. In this study, we analyzed the aerodynamic characteristic of a developing pantograph on the tilting train and obtained the contact force with catenary by aerodynamic lift force by the aerodynamic analysis. We also performed the numerical analysis for design the device controlling lift force on a pantograph. From the aerodynamic simulation and parameter study for a device to control the lift force, we will suggest the various shape and the optimal shape of it corresponding to a developing tilting pantograph. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

AERODYNAMICS OF THE RAE 101 AIRFOIL IN GROUND EFFECT WITH THE OVERLAPPED GRID (중첩 격자 기법을 이용한 지면 효과를 받는 RAE 101 익형의 공력 해석)

  • Lee, J.E.;Kim, Y.;Kim, E.;Kwon, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.193-198
    • /
    • 2006
  • It takes a lot of time and effort to generate grids for numerical analysis of problems with ground effect because the relative attitude and height of airfoil should be maintained to the ground as well as the inflow. A low Mach number preconditioned turbulent flow solver using the overlap grid technique has been developed and applied to the ground effect simulation. It has been validated that the present method using the multi-block grid gives us highly accurate solutions comparing with the experimental data of the RAE 101 airfoil in an unbounded condition. Present numerical method has been extended to simulate ground effect problems by using the overlapped grid system to avoid tedious work in generating multi-block grid system. An extended method using the overlapped grid has been verified and validated by comparing with results of multi-block method and experimental data as well. Consequently, the overlapped grid method can provide not only sufficiently accurate solutions but also the efficiency to simulate ground effect problems. It is shown that the pressure and aerodynamic centers move backward by the ground effect as the airfoil approaches to the ground.

  • PDF

DELTA-FORMULATION OF A SEGREGATED NAVIER-STOKES SOLVER WITH A DUAL-TIME INTEGRATION (이중시간적분법을 이용한 순차적 유동해석 기법)

  • Kim, J.;Tack, N.I.;Kim, S.B.;Kim, M.H.;Lee, W.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.31-35
    • /
    • 2006
  • The delta-formulation of the Navier-Stokes equations has been popularly used in the aerodynamics area. Implicit algorithm can be easily implemented in that by using Taylor series expansion. This formulation is extended for an unsteady analysis by using a dual-time integration. In the meanwhile, the incompressible flows with heat transfers which occur in the area of thermo-hydraulics have been solved by a segregated algorithm such as the SIMPLE method, where each equation is discretised by using an under-relaxed deferred correction method and solved sequentially. In this study, the dual-time delta formulation is implemented in the segregated Navier-Stokes solver which is based on the collocated cell-centerd scheme with un unstructured mesh FVM. The pressure correction equation is derived by the SIMPLE method. From this study, it was found that the Euler dual-time method in the delta formulation can be combined with the SIMPLE method.

  • PDF

Numerical Analysis of Aerodynamics Characteristics of Two Dimensional Airfoil Section with Elastic Flap (탄성 플랩을 갖는 2차원 날개 단면 공력 특성 전산해석)

  • Won, Chang-Hee;Lee, Joo-Yong;Lee, Sungsu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • This study presents computational analysis of aerodynamic characteristics of two-dimensional airfoil sections with elastic flap attached at the trailing edge. EDISON_CFD was utilized to simulate the incompressible turbulent flow around the foil and MIDAS_IT was employed to estimate the deflection of the flap under the pressure loading. Using iterative procedure, the terminal deflection was estimated and the resulting lift-drag ratio indicates that the favorable effect of the flap is expected within certain amount of angle of attack.

Flow-induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.937-948
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

Wind-induced tall building response: a time-domain approach

  • Simiu, Emil;Gabbai, Rene D.;Fritz, William P.
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.427-440
    • /
    • 2008
  • Estimates of wind-induced wind effects on tall buildings are based largely on 1980s technology. Such estimates can vary significantly depending upon the wind engineering laboratory producing them. We describe an efficient database-assisted design (DAD) procedure allowing the realistic estimation of wind-induced internal forces with any mean recurrence interval in any individual member. The procedure makes use of (a) time series of directional aerodynamic pressures recorded simultaneously at typically hundreds of ports on the building surface, (b) directional wind climatological data, (c) micrometeorological modeling of ratios between wind speeds in open exposure and mean wind speeds at the top of the building, (d) a physically and probabilistically realistic aerodynamic/climatological interfacing model, and (e) modern computational resources for calculating internal forces and demand-to-capacity ratios for each member being designed. The procedure is applicable to tall buildings not susceptible to aeroelastic effects, and with sufficiently large dimensions to allow placement of the requisite pressure measurement tubes. The paper then addresses the issue of accounting explicitly for uncertainties in the factors that determine wind effects. Unlike for routine structures, for which simplifications inherent in standard provisions are acceptable, for tall buildings these uncertainties need to be considered with care, since over-simplified reliability estimates could defeat the purpose of ad-hoc wind tunnel tests.

The effect of Reynolds numbers on the steady state aerodynamic force coefficients of the Stonecutters Bridge deck section

  • Hui, M.C.H.;Zhou, Z.Y.;Chen, A.R.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.179-192
    • /
    • 2008
  • In a wind tunnel experiment employing a reduced scale model, Reynolds number (Re) can hardly be respected. Its effects on the aerodynamics of closed-box bridge decks have been the subject of research in recent years. Stonecutters Bridge in Hong Kong is a cable-stayed bridge having an unprecedented central span of 1018m. The issue of Re sensitivity was raised early in the design phase of the deck of Stonecutters Bridge. The objective of this study is to summarise the results of various wind tunnel experiments in order to demonstrate the effect of Re on the steady state aerodynamic force coefficients. The results may provide an insight on the choice of scale for section model experiments in bridge design projects. Computational Fluid Dynamics (CFD) analysis of forces on bridge deck section was also carried out to see how CFD results are compared with experimental results.

Unsteady Aerodynamic characteristics at High Angle of Attack around Two Dimensional NACA0012 Airfoil (고 받음각 2차원 NACA0012 에어포일 주위의 비정상 공기역학적 특성)

  • Yoo, Jae-Kyeong;Kim, Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.414-419
    • /
    • 2011
  • Missile am fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 60 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure distribution, etc. are analyzed according to the angle of attack. The results at a low angle of attack are compared with other results before a stall condition. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution on the airfoil surface, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

Aerodynamic Simulation of Korea next generation high speed train using open source CFD code (오픈 소스 CFD 코드를 이용한 차세대 고속열차 공력 해석)

  • Kim, B.Y.;Gill, J.H.;Kwon, H.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.327-330
    • /
    • 2011
  • CFD simulation is widely used in various industries, universities and research centers. In Korea most of the researchers use foreign commercial S/W packages especially in industries. But commercial CFD packages have some problems as limit to source code and very high license foe. So from several years ago open source CFD code has been widely spread as an alternative. But in Korea there are a few users of open source code. Insufficiency of performance validation as for accuracy, robustness, convenience and parallel speed-up is important obstacles of open source code. So we tested some validation cases as to incompressible external aerodynamics and internal flaws and now are doing compressible flaws. As the first stage of compressible flow validation, we simulated Korea next generation high speed train(HEMU). It's running condition is 400km/hr and maximum Mach number reaches up to 0.4. With the high speed train we tested accuracy, robustness and parallel performance of open source CFD code OpenFOAM Because there isn't experimental data we compared results with widely used commercial code. When use $1^{st}$ order upwind scheme aerodynamic forces are very similar to commercial code. But using $2^{nd}$ order upwind scheme there was some discrepancy. The reason of the difference is not clear yet. Mesh manipulation, domain decomposition, post-processing and robustness are satisfactory. Paralle lperformance is similar to commercial code.

  • PDF

The Numerical Assessment with Modified Vehicle Rear Body Shape on the Aerodynamic Crosswind Stability Improvement (차량 후미부 형상 변경에 따른 공력 횡풍 안정성 개선에 관한 수치해석 연구)

  • Choi, Sang-Yeol;Kim, Yonung-Tae;Chang, Youn-Hyuck;Ha, Jong-Paek;Kim, Eun-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.51-53
    • /
    • 2008
  • The vehicle aerodynamic crosswind characteristics are mainly governed by the coefficient of side force and yawing moment. These performances affect not only the driving comfort which can be felt by driver but also the safety due to the instability of vehicle. The aims of this investigation are to improve the aerodynamic crosswind performance of sedan vehicle under the crosswind conditions. In order to improve the crosswind stability, numerical analysis has been performed by modifying the rear body shape of vehicle. As the results, we observed about 20% reduction of yawing moment coefficient relative to the base vehicle.

  • PDF