• 제목/요약/키워드: Computational Acoustic Analysis

검색결과 110건 처리시간 0.025초

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF

판토그라프 주변의 유동 및 소음 특성에 관한 연구 (A Study on Aerodynamic and Aeroacoustic Characteristics around Pantograph)

  • 유승원;민옥기;박춘수;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.529-536
    • /
    • 2000
  • This paper describes the analysis of aerodynamics and the prediction of airflow induced noise around simplified pantograph. First, computational fluid dynamics (CFD) is conducted far several model to evaluate linear/nonlinear flow field characteristics due to high speed flow and the CFD results support the computational aeroacoustics. The accurate prediction of the aeroacoustic analysis is necessary for designers to control and reduce the airflow induced noise. We adopt the acoustic analogy based on Ffowcs Williams- Hawkings (FW-H) equation and predict aeroacoustic noise.

  • PDF

CFD를 이용한 단순확장관의 음향특성 해석 (Acoustical Performance Analysis of the Simple Expansion Chamber by using CFD)

  • 김대환;정철웅;정의봉;김형태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1354-1359
    • /
    • 2007
  • This paper discusses the acoustic performance of simple expansion chamber using computational fluid dynamics(CFD). The CFD model consists of an axisymmetric grid with a single period sinusoid of acceptable amplitude and duration imposed at the inlet boundary condition. The time history of the static pressure is recorded at two points, one in the inlet pipe and one point in outlet pipe. The time history of the static pressure is converted to the frequency domain using Fourier Transform and the transmission loss (TL) of the muffler is obtained from the ratio of the static pressure at the inlet and outlet pipe. The transmission loss of CFD result is compared with that of the computational acoustic analysis using the boundary element method (BEM). There are some differences in two results due to the pressure drop according to the inlet and outlet pipe length. Therefore, the effects of the pressure drop to the transmission loss have to be considered.

  • PDF

격자 트랜스버설 결합 (LTJ) 적응필터의 새로운 해석과 계산량 감소 방법 (A New Analysis and a Reduction Method of Computational Complexity for the Lattice Transversal Joint (LTJ) Adaptive Filter)

  • 유재하
    • 한국음향학회지
    • /
    • 제21권5호
    • /
    • pp.438-445
    • /
    • 2002
  • 본 논문에서는 격자 트랜스버설 결합 (LTJ) 적응필터를 시변 변환영역 적응필터 관점에서 해석함으로써 필터계수보상의 필요성을 보다 쉽고 일반적으로 해석하였다. 또한, 음성 신호가 단구간에서 정적이라는 특성을 이용하여 필터계수 보상을 위한 계산량을 감소시킬 수 있는 방법을 제안하였으며, 모의 음성신호와 실제 음성신호를 사용한 실험을 통하여 효용성을 입증하였다. 제안된 적응필터는 필터계수 보상을 위한 계산량이 95% 감소되었으며, 1000탭을 사용하는 음향반향제거기의 경우 전체 시스템의 계산량을 82% 감소시킬 수 있다.

음향상사이론을 이용한 DVD Drive 내에서의 유동소음 예측 (A Prediction of Airflow-Induced Noise in DVD Drive using Acoustic Analogy)

  • 유승원;이종수;민옥기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.502-507
    • /
    • 2000
  • This paper presents the numerical prediction of airflow-induced sound in DVD drives. Computational fluid dynamics (CFD) is first conducted to evaluate flow field characteristics due to the high-speed disk rotation, and to support the acoustic analysis. The acoustic analogy based on Ffowcs Williams-Hawkings (FW-H) equation is adopted to predict aeroacoustic noise patterns. The integral solution for quadrupole volume source is included to identify the turbulence noise generated inside the DVD tray. Near-field noise is strongly affected by the flow field characteristic, which is caused by the complex shape of the tray. For a mid-field, the quadrupole noise play as a counterpart of thickness noise or loading noise, resulting in a different pattern compared with those in the near field.

  • PDF

덕트가 있는 축류홴의 유동 및 음향장 해석 (An Analysis of the Flow and Sound Field of a Ducted Axial Fan)

  • 전완호;정기훈;이덕주
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.208-217
    • /
    • 1999
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

이차원 공동의 구조기인소음 저감을 위한 제진재의 최적배치 (Damping Layout Optimization to Reduce Structure-borne Noises in a Two-Dimensional Cavity)

  • 이두호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.805-812
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of unconstrained damping materials. For the analysis of structural-acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics oJ the viscoelastic materials with frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

  • PDF

수중 프로펠러의 소음 예측에 관한 연구(Part 1. 비공동 소음) (Numerical Analysis of Underwater Propeller Noise(Part 1. Non-Cavitating Noise))

  • 설한신;이수갑;표상우;서정천
    • 대한조선학회논문집
    • /
    • 제41권2호
    • /
    • pp.21-32
    • /
    • 2004
  • The non-cavitating noise of underwater propeller is considered numerically in this study. The main purpose is to analyze non-cavitating noise from underwater propellers in various operating conditions with different configurations. Noise is predicted by using time-domain acoustic analogy, boundary element method, and computational hydro-acoustics. The flow field is analyzed with potential-based panel method, and then time-dependant pressure data are used as the input for Focus Williams-Hawkings formulation to predict far field acoustics. Furthermore, boundary element method and computational hydro-acoustics are also considered to investigate duct propeller and ducted multi-stage propeller to consider the reflection and diffraction of sound waves. With this methodology, noise intensity and directivity of each noise sources could be well analyzed.

상용 CFD 코드를 이용한 횡류홴 공력소음 특성 해석 (Analysis of the Aeroacoustic Characteristics of Cross-Flow Fan Using a Commercial CFD Code)

  • 전완호;정문기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.289-294
    • /
    • 2002
  • In this study, performance, flow characteristics and noise of a cross-flow-fan system, used in indoor unit of the split-type air conditioner, were predicted by computational simulation. Triangular elements were used to mesh the calculation domain and quadrilateral elements were attached to the blade surfaces and walls to enhance the simulation quality. The unsteady incompressible Wavier-Stokes equations were solved using a sliding mesh technique on the interface between rotating fan region and the outside. Two stripes of velocity stream inside the cross-flow-fan were shown - the one was due to the eccentric vortex and the other was due to the normal entrance flow. As the flow rate increased, the center of the eccentric vortex moved toward the inner blade tip and rear-guide, and the exiting flow still had velocity variation along the stabilizer, which can increase the noise level. The acoustic pressure was calculated by using Lowson's equation. From the calculated acoustic pressure, it was found that the trailing edge is a dominant of acoustic generation.

  • PDF

이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석 (Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles)

  • 이용선;김상효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF