• Title/Summary/Keyword: Compromised nodes

Search Result 49, Processing Time 0.028 seconds

New Secure Network Coding Scheme with Low Complexity (낮은 복잡도의 보안 네트워크 부호화)

  • Kim, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.295-302
    • /
    • 2013
  • In the network coding, throughput can be increased by allowing the transformation of the received data at the intermediate nodes. However, the adversary can obtain more information at the intermediate nodes and make troubles for decoding of transmitted data at the sink nodes by modifying transmitted data at the compromised nodes. In order to resist the adversary activities, various information theoretic or cryptographic secure network coding schemes are proposed. Recently, a secure network coding based on the cryptographic hash function can be used at the random network coding. However, because of the computational resource requirement for cryptographic hash functions, networks with limited computational resources such as sensor nodes have difficulties to use the cryptographic solution. In this paper, we propose a new secure network coding scheme which uses linear transformations and table lookup and safely transmits n-1 packets at the random network coding under the assumption that the adversary can eavesdrop at most n-1 nodes. It is shown that the proposed scheme is an all-or-nothing transform (AONT) and weakly secure network coding in the information theory.

Enhanced Robust Cooperative Spectrum Sensing in Cognitive Radio

  • Zhu, Feng;Seo, Seung-Woo
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.122-133
    • /
    • 2009
  • As wireless spectrum resources become more scarce while some portions of frequency bands suffer from low utilization, the design of cognitive radio (CR) has recently been urged, which allows opportunistic usage of licensed bands for secondary users without interference with primary users. Spectrum sensing is fundamental for a secondary user to find a specific available spectrum hole. Cooperative spectrum sensing is more accurate and more widely used since it obtains helpful reports from nodes in different locations. However, if some nodes are compromised and report false sensing data to the fusion center on purpose, the accuracy of decisions made by the fusion center can be heavily impaired. Weighted sequential probability ratio test (WSPRT), based on a credit evaluation system to restrict damage caused by malicious nodes, was proposed to address such a spectrum sensing data falsification (SSDF) attack at the price of introducing four times more sampling numbers. In this paper, we propose two new schemes, named enhanced weighted sequential probability ratio test (EWSPRT) and enhanced weighted sequential zero/one test (EWSZOT), which are robust against SSDF attack. By incorporating a new weight module and a new test module, both schemes have much less sampling numbers than WSPRT. Simulation results show that when holding comparable error rates, the numbers of EWSPRT and EWSZOT are 40% and 75% lower than WSPRT, respectively. We also provide theoretical analysis models to support the performance improvement estimates of the new schemes.

Dynamic Threshold Determination Method for Energy Efficient SEF using Fuzzy Logic in Wireless Sensor Networks (무선 센서 네트워크에서 통계적 여과 기법의 에너지 효율 향상을 위한 퍼지논리를 적용한 동적 경계값 결정 기법)

  • Choi, Hyeon-Myeong;Lee, Sun-Ho;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • In wireless sensor networks(WSNs) individual sensor nodes are subject to security compromises. An adversary can physically capture sensor nodes and obtain the security information. And the adversary injects false reports into the network using compromised nodes. If undetected, these false reports are forwarded to the base station. False reports injection attacks can not only result in false alarms but also depletion of the limited amount of energy in battery powered sensor nodes. To combat these false reports injection attacks, several filtering schemes have been proposed. The statistical en-routing filtering(SEF) scheme can detect and drop false reports during the forwarding process. In SEF, The number of the message authentication codes(threshold) is important for detecting false reports and saving energy. In this paper, we propose a dynamic threshold determination method for energy efficient SEF using fuzzy-logic in wireless sensor networks. The proposed method consider false reports rate and the number of compromised partitions. If low rate of false reports in the networks, the threshold should low. If high rate of false reports in networks, the threshold should high. We evaluated the proposed method’s performance via simulation.

Design of Sensor Network Security Model using Contract Net Protocol and DEVS Modeling (계약망 프로토콜과 DEVS 모델링을 통한 센서네트워크 보안 모델의 설계)

  • Hur, Suh Mahn;Seo, Hee Suk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.41-49
    • /
    • 2008
  • Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes. Such attacks by compromised sensors can cause not only false alarms but also the depletion of the finite amount of energy in a battery powered network. In order to reduce damage from these attacks, several security solutions have been proposed. Researchers have also proposed some techniques to increase the energy-efficiency of such security solutions. In this paper, we propose a CH(Cluster Header) selection algorithm to choose low power delivery method in sensor networks. The CNP(Contract Net Protocol), which is an approach to solve distribution problems, is applied to choose CHs for event sensing. As a result of employing CNP, the proposed method can prevent dropping of sensing reports with an insufficient number of message authentication codes during the forwarding process, and is efficient in terms of energy saving.

Detection of False Data Injection Attacks in Wireless Sensor Networks (무선 센서 네트워크에서 위조 데이터 주입 공격의 탐지)

  • Lee, Hae-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.83-90
    • /
    • 2009
  • Since wireless sensor networks are deployed in open environments, an attacker can physically capture some sensor nodes. Using information of compromised nodes, an attacker can launch false data injection attacks that report nonexistent events. False data can cause false alarms and draining the limited energy resources of the forwarding nodes. In order to detect and discard such false data during the forwarding process, various security solutions have been proposed. But since they are prevention-based solutions that involve additional operations, they would be energy-inefficient if the corresponding attacks are not launched. In this paper, we propose a detection method that can detect false data injection attacks without extra overheads. The proposed method is designed based on the signature of false data injection attacks that has been derived through simulation. The proposed method detects the attacks based on the number of reporting nodes, the correctness of the reports, and the variation in the number of the nodes for each event. We show the proposed method can detect a large portion of attacks through simulation.

Determination Method of Security Threshold using Fuzzy Logic for Statistical Filtering based Sensor Networks (통계적 여과 기법기반의 센서 네트워크를 위한 퍼지로직을 사용한 보안 경계 값 결정 기법)

  • Kim, Sang-Ryul;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.27-35
    • /
    • 2007
  • When sensor networks are deployed in open environments, all the sensor nodes are vulnerable to physical threat. An attacker can physically capture a sensor node and obtain the security information including the keys used for data authentication. An attacker can easily inject false reports into the sensor network through the compromised node. False report can lead to not only false alarms but also the depletion of limited energy resource in battery powered sensor networks. To overcome this threat, Fan Ye et al. proposed that statistical on-route filtering scheme(SEF) can do verify the false report during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and energy, where security threshold value is the number of message authentication code for verification of false report. In this paper, we propose a fuzzy rule-based system for security threshold determination that can conserve energy, while it provides sufficient detection power in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the probability of a node having non-compromised keys, the number of compromised partitions, and the remaining energy of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.

  • PDF

Trust Based Authentication and Key Establishment for Secure Routing in WMN

  • Akilarasu, G.;Shalinie, S. Mercy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4661-4676
    • /
    • 2014
  • In Wireless Mesh Networks (WMN), an authentication technique can be compromised due to the distributed network architecture, the broadcast nature of the wireless medium and dynamic network topology. Several vulnerabilities exist in different protocols for WMNs. Hence, in this paper, we propose trust based authentication and key establishment for secure routing in WMN. Initially, a trust model is designed based on Ant Colony Optimization (ACO) to exchange the trust information among the nodes. The routing table is utilized to select the destination nodes, for which the link information is updated and the route verification is performed. Based on the trust model, mutual authentication is applied. When a node moves from one operator to another for accessing the router, inter-authentication will be performed. When a node moves within the operator for accessing the router, then intra-authentication will be performed. During authentication, keys are established using identity based cryptography technique. By simulation results, we show that the proposed technique enhances the packet delivery ratio and resilience with reduced drop and overhead.

Mutual Authentication Mechanism for Secure Group Communications in Sensor Network (센서 네트워크에서의 안전한 그룹통신을 위한 상호 인증 기법)

  • Ko, Hye-Young;Doh, In-Shil;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.441-450
    • /
    • 2010
  • Recently, a lot of interest is increased in sensor network which gathers various data through many sensor nodes deployed in wired and wireless network environment. However, because of the limitation in memory, computation, and energy of the sensor nodes, security problem is very important issue. In sensor network, not only the security problem, but also computing power should be seriously considered. In this paper, considering these characteristics, we make the sensor network consist of normal sensor nodes and clusterheaders with enough space and computing power, and propose a group key rekeying scheme adopting PCGR(Predistribution and local Collaborationbased Group Rekeying) for secure group communication. In our proposal, we enhance the security by minimizing the risk to safety of the entire network through verifying the new key value from clusterheader by sensor nodes. That is, to update the group keys, clusterheaders confirm sensor nodes through verifying the information from sensor nodes and send the new group keys back to authentic member nodes. The group keys sent back by the clusterheaders are verified again by sensor nodes. Through this mutual authentication, we can check if clusterheaders are compromised or not. Qualnet simulation result shows that our scheme not only guarantees secure group key rekeying but also decreasesstorage and communication overhead.

An Hierarchical Key Management Scheme for Assure Data Integrity in Wireless Sensor Network (WSN에서 데이터 무결성을 보장하는 계층적인 키 관리 기법)

  • Jeong, Yoon-Su;Hwang, Yoon-Cheol;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3C
    • /
    • pp.281-292
    • /
    • 2008
  • A main application of sensor networks are to monitor and to send information about a possibly hostile environment to a powerful base station connected to a wired network. To conserve power from each sensor, intermediate network nodes should aggregate results from individual sensors. However, it can make it that a single compromised sensor can render the network useless, or worse, mislead the operator into trusting a false reading. In this paper, we propose a protocol to give us a key aggregation mechanism that intermediate network nodes could aggregate data more safely. The proposed protocol is more helpful at multi-tier network architecture in secure sessions established between sensor nodes and gateways. From simulation study, we compare the amount of the energy consumption overhead, the time of key transmission and the ratio of of key process between the proposed method and LHA-SP. The simulation result of proposed protocol is low 3.5% a lord of energy consumption than LHA-SP, the time of key transmission and the ration of key process is get improved result of each 0.3% and 0.6% than LHA-SP.

FRChain: A Blockchain-based Flow-Rules-oriented Data Forwarding Security Scheme in SDN

  • Lian, Weichen;Li, Zhaobin;Guo, Chao;Wei, Zhanzhen;Peng, Xingyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.264-284
    • /
    • 2021
  • As the next-generation network architecture, software-defined networking (SDN) has great potential. But how to forward data packets safely is a big challenge today. In SDN, packets are transferred according to flow rules which are made and delivered by the controller. Once flow rules are modified, the packets might be redirected or dropped. According to related research, we believe that the key to forward data flows safely is keeping the consistency of flow rules. However, existing solutions place little emphasis on the safety of flow rules. After summarizing the shortcomings of the existing solutions, we propose FRChain to ensure the security of SDN data forwarding. FRChain is a novel scheme that uses blockchain to secure flow rules in SDN and to detect compromised nodes in the network when the proportion of malicious nodes is less than one-third. The scheme places the flow strategies into blockchain in form of transactions. Once an unmatched flow rule is detected, the system will issue the problem by initiating a vote and possible attacks will be deduced based on the results. To simulate the scheme, we utilize BigchainDB, which has good performance in data processing, to handle transactions. The experimental results show that the scheme is feasible, and the additional overhead for network performance and system performance is less than similar solutions. Overall, FRChain can detect suspicious behaviors and deduce malicious nodes to keep the consistency of flow rules in SDN.