• Title/Summary/Keyword: Compressor efficiency

Search Result 532, Processing Time 0.025 seconds

A study on the Characteristics of linear compressor drive systems (선형 압축기 구동시스템 특성에 관한 연구)

  • Ahn J.R.;Chun T.W.;Lee H.H.;Kim H.G.;Nho E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.424-429
    • /
    • 2003
  • A reciprocating compressor with a rotary motor used in a refrigerator has low efficiency, because it has the large mechanical losses due to the crank mechanism. The linear compressor which has the free piston driven by a linear motor, was developed to increase the efficiency of compressor by reducing mechanical losses. The TRIAC has been widely used for controlling the piston, because it has simple structure. However, as it is able to control only stator voltage, it is very difficult to obtain good efficiency. Recently, PWM inverter which is able to control the voltage as well as the frequency, is applied to linear compressor drive system to overcome above problem. In this paper, the variations for efficiency and power factor of linear compressor are investigated by changing both the mechanical resonant frequency and electrical resonant frequency of linear compressor, and also the inverter frequency The optimum relationships between both resonant frequencies and the inverter frequency is derived in order to obtain the maximum efficiency and also good power factor.

  • PDF

Performance test of 100 W linear compressor

  • Ko, J.;Koh, D.Y.;Park, S.J.;Kim, H.B.;Hong, Y.J.;Yeom, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

Performance degradation due to compressor fouling of an industrial gas turbine operating at design point condition (막오염에 의한 압축기 성능 저하가 발전용 가스터빈 설계점 성능에 미치는 영향에 관한 연구)

  • Seo, J.S.;Sohn, J.L.;Kim, J.H.;Kim, T.S.;Ro, S.T.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.36-43
    • /
    • 2003
  • Operating performance of industrial gas turbines in combined cycle power plants depends upon atmospheric conditions. Compressor fouling caused by airborne particles in the atmosphere and their adhesions on compressor blades is one of critical phenomena related to the performance degradation of industrial gas turbines. Compressor fouling provokes increase of pressure loss in inlet duct, decrease of mass flow rate of intake air and decrease of compressor stage efficiency. In this study, impacts of compressor fouling on the performance of an industrial gas turbine operating at design point condition are investigated analytically. As results, it is found that the reduction of produced power with decreased mass flow rate of intake air caused by narrowed flow area by the adhesion of airborne particles on compressor blades is the most dominant impact on the gas turbine performance by the compressor fouling phenomena.

Development of Neon Compressor for Reverse Brayton Cryocooler (극저온 냉동기용 냉매압축기의 개발)

  • Kim, Seungwoo;Park, Kicheol;Lee, Kiho;Kim, Kyungsoo;Kim, Dongkwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.237-243
    • /
    • 2002
  • A centrifugal compressor of 50HP for reverse brayton cryocooler using neon as a coolent has been developed. It has relatively low total-to-total pressure ratio but mass flow rate is very small and the voting gas, neon, has greater specific heat ratio than air. It was essential to have very high rotational speed of 100,000 RPM. The efficiency of compressor has great effects on overall system and the COP of cryocooler. To meet the design requirement of the compressor efficiency and to minimized the required rotational speed, highly efficiency impeller having low specific speed was designed. To maintain the overall system efficient high, gas bearing of bump type and high speed permanent magnet synchronus motor was developed and adopted. In this paper, design and performance prediction results of the compressor impeller is presented.

  • PDF

Acoustic and Flow-filed Analysis of Suction Muffler in Compressor (압축기용 흡입머플러의 음향 및 유동해석)

  • 주재만;이학준;오상경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1162-1167
    • /
    • 2001
  • Suction valve fluttering is generated by reciprocating motions of the piston inhaling and discharging process of gas in the hermetic compressor. A reactive type suction muffler, which produces high pressure-drop because of its complicated flow path, controls the impulsive noise radiated from the flutter of suction valve. The high-pressure drop in the muffler increases the transmission loss, but reduces the EER(Energy Efficiency Ratio) of the compressor. We consider how to design the high acoustic attenuation and low pressure-drop performance to take account of the acoustic and flow performances of the suction muffler. In this study, we identified the suction noise source of compressor from the measurement of the acoustic pulsation and flutter of suction valve. We analyzed the acoustic characteristics of muffler using the finite element method, and compared the experimental and analytical characteristics of flow path of suction muffler. Theoretical predictions and experimental results are compared from the viewpoint of the acoustic performance and energy efficiency of the compressor.

  • PDF

Application of Surrogate Modeling to Design of A Compressor Blade to Optimize Stacking and Thickness

  • Samad, Abdus;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • Surrogate modeling is applied to a compressor blade shape optimization to modify its stacking line and thickness to enhance adiabatic efficiency and total pressure ratio. Six design variables are defined by parametric curves and three objectives; efficiency, total pressure and a combined objective of efficiency and total pressure are considered to enhance the performance of compressor blade. Latin hypercube sampling of design of experiments is used to generate 55 designs within design space constituted by the lower and upper limits of variables. Optimum designs are found by formulating a PRESS (predicted error sum of squares) based averaging (PBA) surrogate model with the help of a gradient based optimization algorithm. The optimum designs using the current variables show that, to optimize the performance of turbomachinery blade, the adiabatic efficiency objective is improved substantially while total pressure ratio objective is increased a very small amount. The multi-objective optimization shows that the efficiency can be increased with the less compensation of total pressure reduction or both objectives can be increased simultaneously.

A Design Procedure for a Multi-Stage Axial Compressor Using the Stage-Stacking Method (단축적방법을 이용한 다단 축류압축기의 설계)

  • 강동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1598-1603
    • /
    • 1994
  • A preliminary design procedure for a multi-stage axial compressor is developed, which is based on the stage-stacking method. It determines the flow coefficient which gives rise to the design conditions required such as pressure ratio, mass flow rate and rotational speed for a given specific mass flow rate at inlet to a compressor. With this flow coefficient, blade radii, every stage and compressor performance characterics such as stage pressure ratio, adiabatic efficiency etc. are calculated by stacking each stage performance characteristics. It is shown that there is an optimum number of stage which results in the maximum of compressor overall efficiency for a given specific mass flow rate at inlet to a compressor. A test design was tried for three different geometric design constraints, and comparison with a previous study shows that present procedure could be used reliably in determining the number of compressor stage in preliminary design stage.

Performance Test for a Centrifugal Air Compressor (원심형 공기압축기 성능시험)

  • 신유환;안이기;김광호;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1964-1971
    • /
    • 1995
  • In the present study, the performance characteristics of a centrifugal air compressor were investigated experimentally. The PC controlled performance test facility for a centrifugal air compressor driven by an electric motor with a gear box to achieve higher compressor rotating speed was set up in the present study. The performance test for a turbocharger compressor of a diesel engine was conducted, and in a case of 34,800 rpm, pressure ratio 1.18, flow rate 0.09kg/s, compressor efficiency 61% were investigated. Adiabatic power for a tested compressor showed maximum value at mass flow ratio 0.8. The value of mass flow ratio of maximum efficiency was about 0.37, it was independent of compressor rotating speed.

Simulation on Performance Characteristics of a Tip-Seal Type Scroll Compressor (팁실형 스크롤 압축기의 성능 특성에 관한 해석적 연구)

  • Youn, Young;Kim, Yong-Chan;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1306-1318
    • /
    • 2001
  • This paper presents leakage and performance characteristics of a tip-seal type scroll compressor, The performance of a scroll compressor is strongly dependent on the leak age across the compression pockets. However, literature for leakage characteristics of the tip seal type scroll compressor is very limited due to complex sealing mechanism. In the present study, a simulation study was executed to investigate the tip-seal type scroll compressor by considering leakages passing through flank and tip clearance. As a result, the leakage phenomena of the tip seal type scroll compressor as a function of discharge pressure, tip clearance, dimension of the tip seal were analyzed. Effects of leakage on the performance of the compressor were also clarified.

  • PDF

A study on the Modulated Scroll Compressor by Bypass Method (바이패스방식을 이용한 용량가변 스크롤 압축기에 관한 연구)

  • Kim, Cheol-Hwan;Shin, Dong-Koo;Park, Hong-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.693-696
    • /
    • 2003
  • Hermetic Compressor circulates refrigerant with constant flow rate regardless of operation condition. so, at the operating condition requiring low cooling capacity, too much refrigerant flow deteriorates seasonal energy efficiency ratio(SEER). In this reason, modulated compressor is needed to improve SEER. Among many types of modulated compressor, non-inverter type modulated compressor is required for its low cost and easy to development. In the modulated scroll compressor by bypass method, EER steeply decreases for many loss like re-compression, changes of volume ratio, decrease of motor efficiency by torque variation. So. the range of modulation ratio for optimized SEER must be selected accompany with air conditioner set development.

  • PDF