• Title/Summary/Keyword: Compressor Characteristics

Search Result 653, Processing Time 0.023 seconds

Study on Inverse Modeling of a Turboprop in High Altitude Operation using Engine Performance Data (성능데이터를 이용한 고고도운용 터보프롭엔진 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong;Kim, Ji-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 2010
  • The gas turbine engine performance relies greatly on its component performance characteristics. Generally, engine manufacturers do not provide engine purchasers the component performance characteristics which can be obtained by lots of experimental tests at various operating conditions and big amount of expenses. In previous works the component maps have mostly been generated by scaling from a similar component map. However this scaling method has large error at off design points, specially in high altitude operation. Therefore this work proposes an inverse modeling method that can generate components maps of PT6A-67A turboprop engine using performance data provided by the engine manufacturer. In addition, evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and performance data.

Development of Cascade Refrigeration System Using R744 and R404A - Analysis on Performance Characteristics - (R744-R404A용 캐스케이드 냉동시스템 개발에 관한 연구(1) - 성능 특성에 관한 분석 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.182-188
    • /
    • 2011
  • In this paper, analysis on the performance characteristics of R744-R404A cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in R404A high- and R744 low-temperature cycle, respectively. The main results were summarized as follows : It was observed that the highest COP of the system is achieved by higher superheating degree in R744 cycle than that in R404A cycle. The COP of the system increased by giving the subcooling degree in both cycles. The COP of the cascade system is the highest value when the system is operated at an optimum evaporation temperature.

Performance Characteristics of Cascade Refrigeration System Using R744 and R410A (R744-R410A용 이원 냉동시스템 성능 특성)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1548-1554
    • /
    • 2013
  • This paper presents the analysis on performance characteristics of R744-R410A cascade refrigeration system to offer the basic design data for the operating parameters of this system. The performance of cascade refrigeration system is analyzed by using EES program. The operating parameters include compressor efficiency, and condensing and evaporating temperature in R410A high- and R744 low-temperature cycle, respectively. The COP of this system increases with the decrease of condensing temperature, and increases with the increasing evaporating temperature. And the COP of this system increases with the compression efficiency. Therefore, it can be seen that the compression efficiency, and evaporating and condensing temperature of R744-R410A cascade refrigeration system have an effect on the COP of this system. Also, it can be known that the cascade evaporation temperature with the highest efficiency in each parameter is present. Thus, it is an important to design R744-R410A cascade refrigeration system by considering these parameters.

Test Rig Development for Identification of Rotordynamic Force Coefficients of Squeeze Film Dampers in Automotive Turbocharger Bearing Systems (자동차 터보차저 베어링 시스템에 적용되는 스퀴즈 필름 댐퍼의 동적계수 측정을 위한 실험장치 개발)

  • Hwang, Jisu;Ryu, Keun;Jeung, Sung-Hwa
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2018
  • This paper describes a new test rig for identification of rotordynamic force coefficients of squeeze film dampers (SFDs) in automotive turbochargers (TCs). Prior studies have mainly concentrated on relatively large-sized SFDs used in aircraft engines, turbocompressors, and turbopumps. The main objective of the current study is to propose a test rig for identification of dynamic force coefficients of small-sized SFDs (a journal diameter of ~11 mm). The current test rig consists of a journal, a SFD cartridge, four support rods, an upper structure, a data acquisition (DAQ) system, and an oil circulation unit. The annular gaps between the journal outer surface and SFD cartridge inner surface create SFD film lands. The damper has two parallel film lands separated by a central groove, having an axial length and depth of 3 mm. Each film land has a length of 4 mm with a $40{\mu}m$ radial clearance. The static load and dynamic impact tests identify the structural characteristics (i.e., stiffness and natural frequency) of the journal and assembled test rig. The measurements show good agreement with predictions. The SFD performance data from this test rig will be used to develop innovative TC rotor systems with improved NVH and reliability characteristics incorporating advanced SFD technology.

The Study on Development of Low NOx Combustor with Lean Burn Characteristics for Microturbine (희박 예혼합 연소를 이용한 마이크로터빈의 저공해 연소기 개발에 관한 연구)

  • Yoon, Jeong-Jung;Lee, Heon-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.63-72
    • /
    • 2003
  • In order to reduce NOx emissions in the 20kW class microturbine under development, the low NOx characteristics, as being an application to the lean premixed combustion technology, have been investigated. The study has been conducted at the conditions of high temperature and high pressure. Theair from a compressor with the pressure of 2.5bar, 3.0bar, 3.5bar was supplied to the combustor with the temperature 560K through the air preheat-treatment. The sampling exhaust gas was measured at the immediate exit of the combustor. For the effect of temperature on NO and CO emissions, though NOx were increased, CO was decreased with increasing inlet air temperature. With increasing inlet air pressure, NOx were increased and CO was decreased also. NOx were decreased, but CO was increased with increasing inlet air mass flow rate. The test has been performed on the equivalent ratio of 0.10 to 0.16 in the lean region. NOx were increased with increasing equivalent ratio, but CO was decreased as an influence of flame temperature. CFD work with an appropriate combustion model predicated a complicated swirling flow pattern in the combustor, and also produced a numerical value of NOx and CO emissions which was to be compared with the experimental one. As the results of this study, NOx are expected to be reduced to less than 42ppm at 15% O2 when operated at the design condition of the 20kW class microturbine.

  • PDF

Experimental Study on Cooling Performance of Multi-Heat Pump by Indoor-Unit Combination (실내기 조합에 따른 3실형 열펌프의 냉방성능 실험연구)

  • Kwon, Young-Chul;Chun, Chong-Keun;Park, Youn-Chang;Ko, Kok-Won;Seo, Dong-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1487-1493
    • /
    • 2008
  • In order to investigate the cooling capacity of multi-heat pump applying an inverter compressor, the experiment on the cooling performance characteristics of heat pump with 3 indoor units was performed under the cooling standard and cooling low-temperature conditions. The system data were measured by the psychrometric calorimeter. The operation characteristics and the behavior of the cooling cycle of the heat pump with 3 indoor units were understood from the cooling capacity, COP, and P-h diagram by indoor-unit combination. The operating load and performance of the multi-heat pump depends on the indoor-unit combination. The cooling capacity and COP of the low temperature condition were larger than those of the standard one. Also the cycle was analyzed by using P-h diagram.

Response Characteristics of the HIL System for Passenger Diesel Engine (승용 디젤엔진 HIL 시스템의 응답 특성)

  • Chung, Jin-Eun;Roh, Ho-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4745-4750
    • /
    • 2011
  • A HIL(hardware-in-the-loop) system was established and the simulation was carried out to determine whether the system operates normally. The system consists of turbocharger test bench, HIL platform with real time S/W and DAQ, and engine model using Matlab/Simulink. In the simulation the supplied fuel rate is changed step-by-step from 1.8944 kg/h to 4.7360 kg/h. The change of air-fuel ratio is analyzed and observed whether the air-fuel ratio follow the target air-fuel ratio 32. When the supplied fuel rate is changed, the air-fuel ratio is converged to the target air-fuel ratio after about 20 seconds. And the vane duty ratio of turbine and the boost pressure of compressor are also changed properly. Therefore this HIL system can be used to develop the new turbocharger and improve the performance of the modified turbocharger.

Performance Characteristics of Hypersonic External Compression Inlet Using Isentropic Compression Surface (등엔트로피 압축면을 이용한 극초음속 외부 압축형 흡입구 성능 특성)

  • Kim, Young Jin;Lee, Hyoung Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.297-308
    • /
    • 2022
  • Most air-breathing aircraft operated in the hypersonic region are equipped with a scramjet engine. In a scramjet engine, a shock wave generated at an inlet acts as a compressor for a general gas turbine engine instead, so total pressure loss caused by the shock wave is considered very important. In this study, to minimize total pressure loss, a method of designing an external compression inlet using isentropic compression surface was proposed, and an external compression inlet with 3-deflection angles and Busemann inlet were designed under the same conditions. After that, through computational analysis, the performance characteristics at off-design conditions were compared. Each inlet shape was truncated according to the length of the 3-ramp external compression inlet, and the boundary layer correction was performed. The isentropic external compression inlet showed superior performance at the design point, but under the off-design conditions, its performance was degraded compared to the 3-ramp external compression inlet.

A New Methodology for Advanced Gas Turbine Engine Simulation

  • M.S. Chae;Y.C. Shon;Lee, B.S.;J.S. Eom;Lee, J.H.;Kim, Y.R.;Lee, H.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.369-375
    • /
    • 2004
  • Gas turbine engine simulation in terms of transient, steady state performance and operational characteristics is complex work at the various engineering functions of aero engine manufacturers. Especially, efficiency of control system design and development in terms of cost, development period and technical relevance implies controlling diverse simulation and identification activities. The previous engine simulation has been accomplished within a limited analysis area such as fan, compressor, combustor, turbine, controller, etc. and this has resulted in improper engine performance and control characteristics because of limited interaction between analysis areas. In this paper, we propose a new simulation methodology for gas turbine engine performance analysis as well as its digital controller to solve difficulties as mentioned above. The novel method has particularities of (ⅰ) resulting in the integrated control simulation using almost every component/module analysis, (ⅱ) providing automated math model generation process of engine itself, various engine subsystems and control compensators/regulators, (ⅲ) presenting total sophisticated output results and easy understandable graphic display for a final user. We call this simulation system GT3GS (Gas Turbine 3D Graphic Simulator). GT3GS was built on both software and hardware technology for total simulation capable of high calculation flexibility as well as interface with real engine controller. All components in the simulator were implemented using COTS (Commercial Off the Shelf) modules. In addition, described here includes GT3GS main features and future works for better gas turbine engine simulation.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.