• 제목/요약/키워드: Compressor Characteristics

검색결과 651건 처리시간 0.025초

다단 압축기의 단 매칭 기법에 관한 연구 (A Study on The Stage Matching of Multistage Compressor)

  • 최창호;김진한;김춘택;양수석;이대성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.163-168
    • /
    • 2000
  • A method to search the design parameters for optimum stage matching has been used based on a 1-D mathematical model of a compressor, which uses the data obtained from the preliminary test to identify the design parameters. This methodology was applied with a two-stage axial compressor, which was originally designed for a helicopter gas turbine engine. After Identifying design parameters using preliminary test data, an optimization process has been employed to achieve the best matching between the stages (i.e., maximum efficiency of the compressor at its operation modes within a given range of the rotor speed under given restrictions for required stall margins and mass flow). 3-D flow calculations have been performed to confirm the usefulness of the corrections based on 1-D mathematical model. Calculational results agree well with the experimental data in view of the performance characteristics. Some promising results were produced through the methodology proposed in this paper in conjunction with flow calculations.

  • PDF

LNG 플랜트용 프로판 냉매 압축기 공력설계 및 수치해석 (AERODYNAMIC DESIGN AND NUMERICAL ANALYSIS OF PROPANE REFRIGERANT CENTRIFUGAL COMPRESSOR FOR LNG PLANT)

  • 박주훈;이원석;강경준;신유환;이윤표;김광호;정진택
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.167-173
    • /
    • 2010
  • In this study, flow structure in a three-stage centrifugal compressor for LNG Plant with the refrigerant, Propane, was numerically investigated at the design point of the compressor using a commercial code. Flow characteristics in the passages of impeller and vaneless diffuser were analyzed in detail including velocity vector, Mach number and pressure contours in blade spanwise and meridional plane for each stage. The estimation on the one-dimensional output from the preliminary design and three-dimensional shape of the impeller blade was performed through the flow analysis. The verification for designed compressor was carried out from three-dimensional Navier-Stokes analysis. The results will be used as reference data for a new design of 3-D impeller shape to improve propane refrigerant compressor performance.

  • PDF

공동 공진해석을 이용한 왕복동식 압축기의 기동소음 저감에 관한 연구 (Start-up Noise Reduction of Reciprocating Compressor Using Cavity Resonance Analysis)

  • 김민철;김원진
    • 한국소음진동공학회논문집
    • /
    • 제20권2호
    • /
    • pp.153-159
    • /
    • 2010
  • This work focuses on finding a method to reduce the noise of a hermetic reciprocating compressor during start-up using an acoustical analysis. The noise of compressor during start-up, which is a higher level than that of a normal operating condition, has transient and non-stationary characteristics. The acoustical analysis of compressor cavity is performed to find an effective method to reduce the noise level. In the acoustical analysis, the shape variations of frequency response function in the neighborhood of resonances are tested for three parameters: the height of remained oil, the suction position of refrigerant and the position of driving part. As a conclusion of this result, to reduce the emission noise of compressor during start-up, the height of remained oil should be kept at 16 mm, the refrigerant should be sucked at the cross point of nodal lines of X and Y directional cavity modes, and the driving part should be positioned in the center of cavity.

Surge Phenomena Analytically Predicted in a Multi-stage Axial Flow Compressor System in the Reduced-Speed Zone

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권3호
    • /
    • pp.110-124
    • /
    • 2014
  • Surge phenomena in the zone of reduced speeds in a system of a nine-stage axial flow compressor coupled with ducts were studied analytically by use of a surge transient simulation code. Main results are as follows. (1) Expansion of apparently stable, non-surge working area of the pressure vs. flow field beyond the initial stage-stall line was predicted by the code in the lower speed region. The area proved analytically to be caused by significantly mismatched stage-working conditions, particularly with the front stages deep in the rotating stall branch of the characteristics, as was already known in situ and in steady-state calculations also. (2) Surge frequencies were found to increase for decreasing compressor speeds as far as the particular compressor system was concerned. (3) The tendency was found to be explained by a newly introduced volume-modified reduced surge frequency. It suggests that the surge frequency is related intimately with the process of emptying and filling of air into the delivery volume. (4) The upstream range of movement of the fluid mass having once passed through the compressor in surge was found to reduce toward the lower speeds, which could have caused additionally the increase in surge frequency. (5) The concept of the volume-modified reduced surge frequency was able to explain, though qualitatively at present, the behaviors of the area-pressure ratio parameter for the stall stagnation boundary proposed earlier by the author.

부하추종형 고효율 지열히트펌프 시스템에 관한 연구 (1) (A Study on the High Efficiency Ground Source Heat Pump System (1))

  • 고득용;김욱중;최상규;장기창
    • 신재생에너지
    • /
    • 제1권4호
    • /
    • pp.30-37
    • /
    • 2005
  • Cycle simulation of Ground Source Heat Pump[GSHP] system was carried out to determine the design specification of basic components such as turbo compressor and heat exchangers. Part load operation characteristics of the designed GSHP system was estimated using the compressor and heat exchanger performance data. A 50RT class turbo compressor for GSHP system is now under development, in which R134a refrigerant is adopted as working fluid. The compressor with variable cascade diffusers is designed to work both in cooling and heating modes so that it can actively keep up with the climate change with high efficiency. The normal running speeds of the compressor are 59000rpm for heating mode and 70000rpm for tooling mode respectively. It has two identical impellers at both ends of the rotor so as to minimize aero-induced thrust force effectively. GSHP system was coupled with a vortical type heat exchanger, and heat gain and heat loss from ground were evaluated per a bore hole. For the optimal integration of the heat pump system, its header for circulating fluid was combined with the ground heat exchangers in parallel and series configuration.

  • PDF

냉장고용 압축기 소음원 규명에 관한 연구 (A Study on the Noise Source Identification of Refrigerator Compressor)

  • 오재응;이창호;이명렬;염성하
    • 한국음향학회지
    • /
    • 제6권1호
    • /
    • pp.48-57
    • /
    • 1987
  • 냉장고에 있어서 소음의 주발생원이 압축기라는 것은 잘 알려져 있는 사실이며 최근 제품의 경량화와 고급화 추세에 따라 그 영향이 더욱 증대되고 있다. 본 연구에서는 이러한 소음을 방지 또는 감소시키기 위하여 냉장고용 압축기에 대한 음압과 음향인텐시티를 측정하여 소음의 방사특성을 파악하였으며 이를 규명하기 위하여 실험적 모우드 해석법을 압축기 구조물에 대하여 적용하였다. 연구결과, 압축기 내부의 모우터 구동에 의해 발생한 진동이 스프링에 의해 효과적으로 절연되지 못하고 있으며 압축기의 shell과 mounting도 소음에 크게 기여하고 있음을 알았다.

  • PDF

$CO_2$ 환경하에서 접촉 표면에 적용한 마이크로 딤플 패턴이 마찰 및 마멸에 미치는 영향 연구 (Friction and Wear Characteristics of the Micro-dimple Surfaces in Rotary Compressor with Carbon Dioxide as Refrigerants)

  • 이영제;전홍규;한규철;최진호;김규만;조성욱
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.374-377
    • /
    • 2008
  • Due to the environmental concerns, especially the greenhouse effect and GWP (Global Warming Potential), the carbon dioxide was investigated as an alternative natural refrigerant to replace HFCs (HydroFluoroCarbons) in refrigerator or air conditioning systems. Because new compressor with carbon dioxide is going to be operated under the high pressure, the tribology of sliding surfaces in the compressor becomes very important. To improve of wear resistance in compressor parts, especially rotary type, the friction and wear characteristics of improved sliding surfaces between vane and flange were evaluated in this paper. The method of reformed sliding surface, such as micro-dimple processes, was applied on surfaces in order to improve the tribological characteristics, and their performances were evaluated experimentally. The vane-on-flange type lubricated sliding tests were performed with a high pressure wear tester using carbon dioxide. Test results showed that the reformed surfaces were very effective to reduce the friction and the wear amounts of vane surfaces. The method of improved surfaces showed good tribological properties at vane and flange.

스크롤 압축기의 크랭크 샤프트의 베어링 재질에 따른 마모특성에 관한 실험적 연구 (A Study on the Wear Characteristics of Bearing According to its Material in Scroll Compressor)

  • 성치언;박영도;황유진;백기대;안성용;이재근
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.194-202
    • /
    • 2008
  • In this study, we investigated the tribology behaviour of two different bearing materials. One of these alloys content is Cu(90)-Sn(10) alloy and is widely used in the automotive industry.The other is Al alloy. This bearing content is Al-Sn-Si-Cu. Therefore, it is required to study on the lublicating characteristics of bearing according to different materials. In this study, compressor bearings made by respectively "PTFE solid lubricant" and "AI alloy with superior load carrying capacity, rubbing and impact endurance", have gone through journal bearing test. Lubrication and abrasion characteristics are evaluated by analyzing the material characteristics of a scroll compressor bearing bush. The AI alloy bearing showed the most excellent lubrication and abrasion characteristics than Cu-Sn alloy under high load condition.

  • PDF

Reynolds Number Effects on Aerodynamic Characteristics of Compressor Cascades for High Altitude Long Endurance Aircraft

  • Kodama, Taiki;Watanabe, Toshinori;Himeno, Takehiro;Uzawa, Seiji
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.195-201
    • /
    • 2008
  • In the jet engines on the aircrafts cruising at high altitude over 20 km and subsonic speed, the Reynolds number in terms of the compressor blades becomes very low. In such an operating condition with low Reynolds number, it is widely reported that total pressure loss of the air flow through the compressor cascades increases dramatically due to separation of the boundary layer and the secondary-flow. But the detail of flow mechanisms causes the total pressure loss has not been fully understood yet. In the present study, two series of numerical investigations were conducted to study the effects of Reynolds number on the aerodynamic characteristics of compressor cascades. At first, the incompressible flow fields in the two-dimensional compressor cascade composed of C4 airfoils were numerically simulated with various values of Reynolds number. Compared with the corresponding experimental data, the numerically estimated trend of total pressure loss as a function of Reynolds number showed good agreement with that of experiment. From the visualized numerical results, the thickness of boundary layer and wake were found to increase with the decrease of Reynolds number. Especially at very low Reynolds number, the separation of boundary layer and vortex shedding were observed. The other series, as the preparatory investigation, the flow fields in the transonic compressor, NASA Rotor 37, were simulated under the several conditions, which corresponded to the operation at sea level static and at 10 km of altitude with low density and temperature. It was found that, in the case of operation at high altitude, the separation region on the blade surface became lager, and that the radial and reverse flow around the trailing edge become stronger than those under sea level static condition.

  • PDF