• Title/Summary/Keyword: Compressive test

Search Result 3,609, Processing Time 0.03 seconds

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

Evaluation of Axial Strains of Reinforced Concrete Columns (철근콘크리트 기둥의 축방향 변형률 평가)

  • Lee, Jung-Yoon;Kim, Min-Ok;Kim, Hyung-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • The longitudinal axial strain in the plastic hinge region of reinforced concrete (RC) columns influences on the structural behavior of RC structures subjected to reversed cyclic loading. This strain decreases the effective compressive strength of concrete and increases the lateral displacements between stories by causing the elongation of member length. This paper investigated the effects of the axial force on the elongation of a RC member by using a sectional analysis of RC members. The analytical and experimental results indicated that the axial force decreased the axial strain in the plastic hinge region of RC columns. In this study, a model was proposed to predict the axial strain of RC columns. The proposed model considering the effects of axial force ratio consisted of three path types ; Path 1-loading region, Path 2-unloading region, and Path 3-reversing cyclic loading region. The axal strains predicted by the proposed model were compared with the test results of RC columns with various axial force ratios, and agreed reasonably with the observed longitudinal strains.

Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion (고속비상체 충돌 및 접촉폭발에 의한 섬유보강 콘크리트의 내충격 성능 평가)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Lee, In-Cheol;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this study we experimentally evaluated an impact resistant performance of fiber reinforced concrete in the moment of explosion by high-velocity projectile with emulsion explosive. To assess the impact resistance, we conducted the impact test of high-velocity projectile which reaches an impact speed of 350 m/s and the experiment of contact exploding emulsion explosive. As a result, bending and tensile performance depending on type of PVA, PE fiber (polyvinyl alcohol fiber, polyethylene fiber) and steel fiber affects destruction of rear side in the form of spalling. Destroying the backside of the concrete compressive strength compared to suppress the bending and tensile performance is affected. In addition, the experiment shows that the destruction patterns of concrete specimen producted by high velocity impact and contact explosion are significantly similar. Therefore, it is possible to predict the destruction patterns of specimens in the situation of contact explosion by high-velocity projectile.

Effect of the Replacement of Recycled Coarse Aggregates Under 13mm on Engineering Properties of the Concrete (13mm 이하 순환굵은골재 치환이 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Kang, Byeong-Heo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • The objective of this paper is to investigate experimentally the effect of the substitution of recycled aggregates under 13mm on the properties of the concrete using coarse aggregate with size of 13~25mm. Recycled aggregate under 13mm were substituted to the concrete ranged from 10% to 100%. To compare the properties with the case of recycled aggregate, crushed stone with smaller than 13mm was also substituted to the concrete by 20% and 40%. Test results showed that increase of recycled aggregate under 13mm resulted in the increase of slump and compressive strength compared with plain mixture, which was made with only aggregate with 13~25mm size. This is due to the dense gradation of aggregate in association with addition of relatively small particle. It is thought that the use of recycled aggregate under 13mm along with 30% contributes to the quality improvement of the concrete made with only 13~25mm aggregate.

Effect of Carbon Amino Silica Black Contained Superplasticizer on the Engineering Properties and Chromaticity of Black Color Concrete (카본 아미노 실리카 블랙 기반 고성능 감수제가 블랙 컬러 콘크리트의 공학적 특성 및 발색도에 미치는 영향)

  • Han, Min-Cheol;Hong, Seok-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.181-188
    • /
    • 2013
  • This paper is to investigate experimentally an effect of carbon amino silica black-superplasticizer(CASB-SP)on the engineering properties and chromaticity of black color concrete with 0.45 of W/C(water to cement). CASB-SP and carbon black were applied for pigment of the concrete. To prevent efflorescence of concrete, four different water repellent agents were also applied. As results, it was found that use of CASB-SP increased the slump and air contents. Furthermore, the use of CASB-SP increased the compressive strength. As CASB-SP dosages increased, chromaticity was well developed. For the effect of water repellent agent, the use of epoxy type was effective for protection from efflorescence. Based on test results, it was evaluated that 0.5% of CASB-SP effectively improve the concrete quality as well as enhance the chromaticity with proper dosage.

Effect of fiber type and content on properties of high-strength fiber reinforced self-consolidating concrete

  • Tuan, Bui Le Anh;Tesfamariam, Mewael Gebregirogis;Hwang, Chao-Lung;Chen, Chun-Tsun;Chen, Yuan-Yuan;Lin, Kae-Long
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.299-313
    • /
    • 2014
  • Effects of polypropylene (PP) fibers, steel fibers (SF) and hybrid on the properties of highstrength fiber reinforced self-consolidating concrete (HSFR-SCC) under different volume contents are investigated in this study. Comprehensive laboratory tests were conducted in order to evaluate both fresh and hardened properties of HSFR-SCC. Test results indicated that the fiber types and fiber contents greatly influenced concrete workability but it is possible to achieve self consolidating properties while adding the fiber types in concrete mixtures. Compressive strength, dynamic modulus of elasticity, and rigidity of concrete were affected by the addition as well as volume fraction of PP fibers. However, the properties of concrete were improved by the incorporation of SF. Splitting tensile and flexural strengths of concrete became increasingly less influenced by the inclusion of PP fibers and increasingly more influenced by the addition of SF. Besides, the inclusion of PP fibers resulted in the better efficiency in the improvement of toughness than SF. Furthermore, the inclusion of fibers did not have significant effect on the durability of the concrete. Results of electrical resistivity, chloride ion penetration and ultrasonic pulse velocity tests confirmed that HSFR-SCC had enough endurance against deterioration, lower chloride ion penetrability and minimum reinforcement corrosion rate.

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

Study on the local damage of SFRC with different fraction under contact blast loading

  • Zhang, Yongliang;Zhao, Kai;Li, Yongchi;Gu, Jincai;Ye, Zhongbao;Ma, Jian
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • The steel fiber reinforced concrete (SFRC) shows better performance under dynamic loading than conventional concrete in virtue of its good ductility. In this paper, a series of quasi-static experiments were carried out on the SFRC with volume fractions from 0 to 6%. The compressive strength increases by 38% while the tension strength increases by 106% when the fraction is 6.0%. The contact explosion tests were also performed on the ${\Phi}40{\times}6cm$ circular SFRC slabs of different volume fractions with 20 g RDX charges placed on their surfaces. The volume of spalling pit decreases rapidly with the increase of steel fiber fraction with a decline of 80% when the fraction is 6%, which is same as the crack density. Based on the experimental results, the fitting formulae are given, which can be used to predict individually the change tendencies of the blast crater volume, the spalling pit volume and the crack density in slabs with the increase of the steel fiber fraction. The new formulae of the thickness of damage region are established, whose predictions agree well with our test results and others. This is of great practical significance for experimental investigations and engineering applications.

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.

Application of Macrocell Sensor System for Monitoring of Steel Corrosion in Concrete Structure Exposed to Marine Environment (해양 콘크리트구조물의 철근부식 모니터링을 위한 매크로셀 센서 시스템의 적용)

  • Lee, Seung-Tae;Moon, Dae-Joong;Kim, Wan-Jong;Moon, Jae-Heum;Kim, Hak-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.241-247
    • /
    • 2010
  • Corrosion of steel embedded in concrete is one of the foremost factors that affect the durability of concrete structures in marine environments. This paper presents an application technique of anode-ladder-system to evaluate corrosion behaviours of marine concrete structure. In order to investigate the behaviours quantitatively, the measurement of potential and current was performed on the concrete elements subjected to the penetration and diffusion of chloride ions. The main variable was the heights from seawater level; namely 3.7, 6.0 and 8.2 m. As a result of the monitoring, it was found that the corrosion characteristics differently behaved with the increasing height. Additionally, through migration test, the relationship between compressive strength of concrete and diffusivity of chloride ions was observed. It is suggested, ultimately, that in order to reduce or mitigate steel corrosion, both appropriate concrete cover depth and high-quality of concrete in early ages should be done.