• 제목/요약/키워드: Compressive stiffness

검색결과 403건 처리시간 0.022초

화차 안전성 평가를 위한 차체 정하중시험 및 진동시험 (A safety evaluation on the loading and vibration test of freight car)

  • 권성태;정종덕;김원경;홍용기;허현무
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.92-97
    • /
    • 2002
  • This paper describes the result of carbody and vibration test for freight car. The purpose of the test is to evaluate an safety which carbody structure shall be considered fully sufficient rigidity so as to load a freight car under maximum load and operating condition on line track. The test carbody is constructed by RS korea co., LTD. in accordance with KNR specification. The test cases of the carbody is tested the vertical load and compressive load to verify the strength and stiffness. The vibration test is tested for analysis and evaluation of vibration, to allow for the fact that mechanical vibration in railway vehicles have specific characteristics.

  • PDF

일축 및 이축압축을 받는 폴리머침투콘크리트의 응력-변형률 특성 (Stress-Strain Response of Polymer-Impregnated Concrete in Uniaxial and Biaxial Compression)

  • 변근주;이상민;노병철;이용진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.93-98
    • /
    • 1991
  • Polymer-Impregnated Concrete(PIC) can be considered composite material of concrete and polymer and has superior properties compared to conventional cement concrete, such as strength, stiffness, toughness, durability, water-proofing, chemical resistance. However, so far, the usage of PIC has been limited to repairing materials and non-structural applications, due to the lack of the design criteria and the analytical model to determine structural behavior. The objective of this study is to define the stress-strain response and strength characteristics of PIC in uniaxial and various biaxial compressive loading. On the bases of experimental results, general stress-strain relation, biaxial failure envelope and strength evaluation formular of PIC made with normal aggregate and methylmethacrylate(MMA) are proposed.

  • PDF

변동 축하중을 받는 중공 철근콘크리트 교각에 관한 해석적 연구 (Analytical Study on Hollow Reinforced Concrete Bridge Piers under Varying Axial Load)

  • 김태훈;김영진;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.81-84
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load. The role of the variable axial load is very important in the ductility, strength, stiffness, and energy dissipation. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The proposed numerical method for the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load is verified by comparison with reliable experimental results.

  • PDF

형상 기억 합금을 이용한 Al기 복합재료 개발 (Development of AI Matrix Composite using Shape Memory Alloy)

  • 정태헌;이동주;김홍건
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.53-62
    • /
    • 1998
  • A simple analytical and finite element(FE) models are used to study the tensile properties of Al matrix composite with continuous TiNi fibers. The effects of residual stresses caused by the shape momory effects have been compared for various mechanical behaviors as a function of fiber volume fraction and degree of pre-strain and fiber configurations. It is found that both the back stress in the Al matrix induced by stiffness of TiNi fibers and the compressive stress in the matrix are caused of the strengthening mechanisms. Both theoretical and analytical results show quite good agreement and are closed to the experimental data except in high volume content.

  • PDF

철근콘크리트 전단벽의 지진해석 (Seismic Analysis of Reinforced Concrete Shear Wall)

  • 김태훈;박지홍;박재근;최강룡;신현목
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.180-187
    • /
    • 2003
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete shear wall subjected to earthquake motions. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hither-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the seismic analysis of reinforced concrete shear wall is verified by comparison of analysis results with reliable experimental results.

  • PDF

Strength enhancement in confined concrete with consideration of flexural flexibilities of ties

  • Teerawong, J.;Lukkunaprasit, P.;Senjuntichai, T.
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.151-166
    • /
    • 2004
  • The interaction between concrete core expansion and deformation of perimeter ties has been known to have a significant effect on the effective confinement of rectangular reinforced concrete (RC) tied columns. This interaction produces passive confining pressure to the concrete core. Most existing models for determining the response of RC tied columns do not directly account for the influence of flexural stiffness of the ties and the variation of confining stress along the column height. This study presents a procedure for determining the confined compressive strength of RC square columns confined by rectilinear ties with various tie configurations considering directly the influence of flexural flexibility of the ties and the variation of confining stress along the vertical direction. The concept of area compatibility is employed to ensure compatibility of the concrete core and steel hoop in a global sense. The proposed procedure yields satisfactory predictions of confined strengths compared with experimental results, and the influence of tie flexibility, tie configuration and degree of confinement can be well captured.

Strengthening of deficient steel SHS columns under axial compressive loads using CFRP

  • Shahraki, Mehdi;Sohrabi, Mohammad Reza;Azizyan, Gholamreza;Narmashiri, Kambiz
    • Steel and Composite Structures
    • /
    • 제30권1호
    • /
    • pp.69-79
    • /
    • 2019
  • Numerous problems have always vexed engineers with buckling, corrosion, bending, and over-loading in damaged steel structures. The present study aims to study the possible effects of Carbon Fiber Reinforced Polymer (CFRP) for strengthening deficient Steel Square Hollow Section (SHS) columns. To this end, the effects of axial loading, stiffness values, axial displacement, the shape of deficient on the length of steel SHS columns were evaluated based on a detailed parametric study. Ten specimens were tested to failure under axial compression in laboratory and simulated by using Finite Element (FE) analysis based on numerical approach. The results indicated that the application of CFRP sheets resulted in reducing stress in the damage location and preventing or retarding local deformation around the deficiency location appropriately. In addition, the retrofitting method could increase loading the carrying capacity of specimens.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

조립식 좌굴방지가새형 이력댐퍼의 초기형상설계에 따른 구조성능실험 (Structural Performance Test according to Initial shape design of PF-BRB)

  • 김유성;이준호
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.71-79
    • /
    • 2023
  • In this study, a prefabricated buckling brace (PF-BRB) was proposed, and a test specimen was manufactured based on the design formula for the initial shape and structural performance tests were performed. As a result of the experiment, all standard performance requirements presented by KDS 41 17 00 and MOE 2021 were satisfied before and after replacement of the reinforcement module, and no fracture of the joint module occurred. As a result of the incremental load test, the physical properties showed a significant difference in the stiffness ratio after yielding under the compressive load of the envelope according to the experimental results. It is judged necessary to further analyze the physical properties according to the experimental results through finite element analysis in the future.

저경도 고감쇠 고무받침의 동특성에 미치는 영향인자 평가 (Evaluation of Factors Influencing the Dynamic Characteristics of Low Hardness High Damping Rubber Bearings)

  • 최세운;임홍준;조현진;박건록;오주;정희영
    • 한국지진공학회논문집
    • /
    • 제12권3호
    • /
    • pp.11-20
    • /
    • 2008
  • 본 연구에서는 저경도 고감쇠 고무받침 시험체의 다양한 특성실험을 통하여 저경도 고감쇠 고무받침의 특성을 파악하였다. 고무받침의 파악하고자 하는 특성은 압축강성, 전단강성, 등가감쇠비, 전단특성의 변형율 의존성, 전단특성의 면압 의존성, 전단특성의 주파수 의존성, 전단특성의 온도 의존성, 극한전단특성 등이다. 특성실험은 ISO 22762-1에 따라 수행하였으며, ISO 2276-3에 따라 평가하였다. 특성실험결과 전단강성은 전단변형율과 온도 의존성이 큰 것으로 나타났고, 등가감쇠비는 면압 의존성이 큰 것으로 나타났다. 전단특성의 주파수 의존성 실험결과 0.1Hz를 기준으로 경향이 나뉘는 것으로 나타났다. 0.1Hz 이상에서는 전단특성의 변화가 적었지만, 0.1Hz 이하에서는 전단강성과 등가감쇠비 모두 급격히 감소하는 것으로 나타났다. 추가적으로 크리프실험과 극한전단특성실험을 수행하였고, 실험결과는 ISO 22762-3의 요구사항을 만족하는 것으로 나타났다.