• Title/Summary/Keyword: Compressive property

Search Result 596, Processing Time 0.026 seconds

The Study of Properties for Quick Cement Mortar Grouts (초속경성 시멘트 모르타르 그라우트재 특성에 관한 연구)

  • 정밀철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.449-452
    • /
    • 1997
  • Quick hardened property and compressive strength experimented to the C4A3 quantities. Workability experimented to the hydration behavior as retarder added to the C4A3. Compressive strength reached {{{{ delta }}3h=300~350 kgf/$\textrm{cm}^2$, {{{{ delta }}6h=400~450 kgf/$\textrm{cm}^2$, {{{{ delta }}24h=500~550 kgf/$\textrm{cm}^2$. Flow loss rate reached 70.1% to retarder addition 0.12% after 15 min. Test items were SEM, XRD, TG-DTA, MCC, porosity and zeta potential.

  • PDF

Effect of Porous Powder on CNTs Dispersibility (다공성 분체가 CNTs의 분산성에 미치는 영향)

  • Lee, Gun Cheol;Kim, Young Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.199-200
    • /
    • 2020
  • In this study, the effect of porous powders on the dispersibility and strength properties of CNTs was examined.As a result of the experiment, it was found that in the case of incorporation of CNT, the compressive strength property was significantly improved by improving the dispersibility of CNT.

  • PDF

Energy absorption investigation of square CFRP honeycomb reinforced by PMI foam fillers under quasi-static compressive load

  • Zhou, Hao;Guo, Rui;Bao, Kuo;Wei, Haiyang;Liu, Rongzhong
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.837-847
    • /
    • 2019
  • A type of hybrid core made up of thin-walled square carbon fiber reinforced polymer (CFRP) honeycomb and Polymethacrylimide (PMI) foam fillers was proposed and prepared. Numerical model of the core under quasi static compression was established and validated by corresponding experimental results. The compressive properties of the core with different configurations were analyzed through numerical simulations. The effect of the geometrical parameters and foam fillers on the compressive response and energy absorption of the core were analyzed. The results show that the PMI foam fillers can significantly improve the compressive strength and energy absorption capacity of the square CFRP honeycomb. The geometrical parameters have marked effects on the compressive properties of the core. The research can give a reference for the application of PMI foam materials in energy absorbing structures and guide the design and optimization of lightweight and energy efficient cores of sandwiches.

Shrinkage Properties of Blast Furnance Slag Cement Mortar by using Frost-Resistant Accelerator (내한촉진제를 사용한 고로시멘트 모르타르의 수축성상)

  • Choi, Hyeong-Gil;Lee, Jun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • In this study, the effects of blast furnance slag cement and frost-resistant accelerator on shrinkage properties and shrinkage properties of mortar were examined. As a result, the addition of the frost-resistant accelerator to both OPC and BB has a small effect on the flash properties of mortar and the compressive strength increases from the early ages. In addition, when a frost-resistant accelerator is used in excess of the standard usage amount, it is necessary to examine the relationship of the expansion behavior at the early age, especially, between the compressive strength development and the expansion property. And it was confirmed that the addition of the frost-resistant accelerator tended to increase the shrinkage of mortar using the OPC and BB. With the addition of the frost-resistant accelerator, the amount of pores with a diameter of under the 30nm, especially, the amount of pores with a diameter of 20 to 30nm and the amount of pores with an ink-bottle decrease, and the shrinkage increases. And it is considered that a change in the amount this range of pores has a large effect on the shrinkage property.

Strain-dependent-deformation property of Gyeongju compacted bentonite buffer material for engineered barrier system

  • Ivan Jeff Navea;Jebie Balagosa;Seok Yoon;Yun Wook Choo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1854-1862
    • /
    • 2024
  • This study aims to investigate the strain-dependent-deformation property of Gyeongju bentonite buffer material. A series of unconfined compressive tests were performed with cylindrical specimens prepared at varying dry densities (𝜌d = 1.58 g/cm3 to 1.74 g/cm3) using cold isostatic pressing technique. It is found that as 𝜌d increase, the unconfined compressive strength (qu), failure strain, and elastic modulus (E) of Gyeongju compacted bentonite (GCB) increases. Normalized elastic modulus (Esec/Emax) degradation curves of GCB specimens are fitted using Ramberg-Osgood model and the elastic threshold strain (𝜀e,th) is determined through the fitted curves. The strain-dependency of E and Poisson's ratio (v) of GCB were observed. E and v were measured constant below 𝜀e,th of 0.14 %. Then, E decreases while v increases after exceeding the strain threshold. The Esec/Emax degradation curves of GCB in this study suggests wider linear range and higher linearity than those of sedimentary clay in previous study. On top of that, the influence of 𝜌d is observed on Esec/Emax degradation curves of GCB, showing a slight increase in 𝜀e,th with increase in 𝜌d. Furthermore, an empirical model of qu with 𝜌d and a correlation model between qu and E are proposed for Gyeongju bentonite buffer materials.

A Study on the pH Reduction of Cement Concrete with Various Mixing Conditions (시멘트 콘크리트의 배합조건에 따른 pH 저감에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.79-85
    • /
    • 2008
  • The purpose of this study is to evaluate the mix design of pH reducing cement concrete which can be used for environment-friendly concrete. Cement pastes and concretes are prepared with water-binder ratios and various admixtures such as blast-furnace slag, fly ash and recycled cement, and tested for compressive strength and pH. pH is measured through pore solution expressed from hydrated cement paste by special apparatus. From the test results, regardless of water-binder ratio, The pH of expressed pore solution from hydrated cement paste which is made of ordinary portland cement with blast-furnace slag, fly ash is decreased with increasing of admixtures content, and compressive strength is also slightly improved. The compressive strength of cement paste made of recycled cement which is burnt at $1000^{\circ}C$, for 2 hours is considerably increased compared with that of none-burnt recycled cement due to restoration of hydraulic property, but pH is a little higher. Porous concrete with ordinary portland cement has high pH in the range of 12.22 to 12.59, however, that is reduced to the range of 8.95 to 10.39 by carbonation at the surface of porous concrete. The pH reduction of porous concrete is possible by various admixture addition, however their degrees are very slight. Therefore, to reduce the pH considerably, carbonation method of porous concrete is better in pH reduction methods for plant survival condition of pH of 9.0 or less. In this study, it is apparent that pH for the environment-friendly porous concrete products used in the construction field can be suppressed by this carbonation method and various admixtures addition.

Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing

  • Wang, H.Y.;Li, L.S.;Chen, S.H.;Weng, C.F.
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.225-234
    • /
    • 2009
  • Dredged silt from reservoirs in southern Taiwan was sintered to make lightweight aggregates (LWA), which were then used to produce lightweight aggregate concrete (LWAC).This study aimed to assess the compressive strength and homogeneity of LWAC using ultrasonic-echo sensing. Concrete specimens were prepared using aggregates of four different particle density, namely 800, 1100, 1300 and 2650 kg/$m^3$. The LWAC specimens were cylindrical and a square wall with core specimens drilled. Besides compressive strength test, ultrasonic-echo sensing was employed to examine the ultrasonic pulse velocity and homogeneity of the wall specimens and to explore the relationship between compressive strength and ultrasonic pulse velocity. Results show that LWA, due to its lower relative density, causes bloating, thus resulting in uneven distribution of aggregates and poor homogeneity. LWAC mixtures using LWA of particle density 1300 kg/$m^3$ show the most even distribution of aggregates and hence best homogeneity as well as highest compressive strength of 63.5 MPa. In addition, measurements obtained using ultrasonic-echo sensing and traditional ultrasonic method show little difference, supporting that ultrasonic-echo sensing can indeed perform non-destructive, fast and accurate assessment of LWAC homogeneity.

Novel Compressed Sensing Techniques for Realistic Image (실감 영상을 위한 압축 센싱 기법)

  • Lee, Sun Yui;Jung, Kuk Hyun;Kim, Jin Young;Park, Gooman
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.59-63
    • /
    • 2014
  • This paper describes the basic principles of 3D broadcast system and proposes new 3D broadcast technology that reduces the amount of data by applying CS(Compressed Sensing). Differences between Sampling theory and the CS technology concept were described. Recently proposed CS algorithm AMP(Approximate Message Passing) and CoSaMP(Compressive Sampling Matched Pursuit) were described. This paper compared an accuracy between two algorithms and a calculation time that image data compressed and restored by these algorithms. As result determines a low complexity algorithm for 3D broadcast system.

Mix Design for Pervious Recycled Aggregate Concrete

  • Sriravindrarajah, Rasiah;Wang, Neo Derek Huai;Ervin, Lai Jian Wen
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.239-246
    • /
    • 2012
  • Pervious concrete is a tailored-property concrete with high water permeability which allow the passage of water to flow through easily through the existing interconnected large pore structure. This paper reports the results of an experimental investigation into the development of pervious concrete with reduced cement content and recycled concrete aggregate for sustainable permeable pavement construction. High fineness ground granulated blast furnace slag was used to replace up to 70 % cement by weight. The properties of the pervious concrete were evaluated by determining the compressive strength at 7 and 28 days, void content and water permeability under falling head. The compressive strength of pervious concrete increased with a reduction in the maximum aggregate size from 20 to 13 mm. The relationship between 28-day compressive strength and porosity for pervious concrete was adversely affected by the use of recycled concrete aggregate instead of natural aggregate. However, the binder materials type, age, aggregate size and test specimen shape had marginal effect on the strength-porosity relationship. The results also showed that the water permeability of pervious concrete is primarily influenced by the porosity and not affected by the use of recycled concrete aggregate in place of natural aggregate. The empirical inter-relationships developed among porosity, compressive strength and water permeability could be used in the mix design of pervious concrete with either natural or recycled concrete aggregates to meet the specification requirements of compressive strength and water permeability.

Influence on Compressive Strength and Drying Shrinkage of Concrete with Urea-Water Soluble Sulfur Admixture (요소-수용성 유황 혼화제가 콘크리트 압축강도 및 건조수축에 미치는 영향)

  • Park, Jae Kyu;Han, Sang Hoon;Hong, Ki Nam;Cho, Yong In;Chai, Yuzhe
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This paper presents an experimental study to ivestigate mechanical property of concretes according to addition of urea and urea-water soluble sulfur contents. Urea was added at 5~20% replacement by weight of water, and water soluble sulfur was used at 2%, 4% replacement by weight of cement. The setting times, the hydration heat, the compressive strength, and the drying shrinkage, were measured on concretes with single and binary admixtures. From the test result, it was confirmed that the hydration heat of urea-water soluble sulfur was lower than that of normal concrete by $10.1^{\circ}C$, and the drying shrinkage of urea-water soluble sulfur concrete was more excellent than normal concrete. In the case of urea of 5%, Compressive strength were improved with an increase of water soluble sulfur contents. The urea-water soluble sulfur used in this research can be used as improvement materials for drying shrinkage and compressive strength.