• 제목/요약/키워드: Compressive load

검색결과 1,437건 처리시간 0.027초

사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(IV) - 압축정재하시험 및 양방향재하시험 자료 분석을 통한 매입 PHC말뚝의 장기허용압축하중의 실증 성능 검증 - (Study(IV) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Field Verification of Long-term Allowable Compressive Load of PHC Piles by Analyzing Pile Load Test Results -)

  • 이원제;김채민;윤도균;최용규
    • 한국지반공학회논문집
    • /
    • 제35권9호
    • /
    • pp.29-36
    • /
    • 2019
  • 직경 500mm 및 직경 600mm PHC말뚝 A종의 파괴 압축하중($P_n$)은 각각 7.7MN 및 10.6MN으로 계산할 수 있었다. 직경 500mm 및 직경 600mm 매입 PHC말뚝 A종에 대한 압축정재하시험 시 말뚝 두부에 재하된 최대 압축하중은 6.9MN 및 8.8MN으로 측정할 수 있었으며 따라서 이 측정하중은 각각 $P_n$의 90% 및 83% 수준이었다. 직경 500mm 및 직경 600mm PHC말뚝 A종의 장기허용압축하중($P_a$)은 각각 1.7MN 및 2.3MN이었다. 모든 사례 매입 PHC말뚝의 양방향재하시험 자료로부터 계산된 지반의 허용지지력은 국내 현행 설계에서 사용하고 있는 극한지지력 산정공식으로 계산한 지반의 허용지지력보다 높은 수준으로 계산되었다. 따라서 매입 PHC말뚝의 설계에서 사용하는 극한지지력 산정공식은 매입 PHC말뚝의 실제 지지력 거동을 모사할 수 있도록 개선하여야 할 것으로 판단되었다.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

하중이력에 따른 콘크리트 압축부재의 CFS 보강효과에 관한 연구 (Confining Effect of CFS on Concrete Compressive Members under Load Actions)

  • 배주성;김경수;김재욱;고영표
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.705-708
    • /
    • 1999
  • Advanced composite materials such as carbon fiber, aramid, and glass fiber sheet, are widely used recently to strengthening existing reinforced concrete structures. The purpose of this paper was to investigate the mechanical characteristics of concrete compressive members confined with carbon fiber sheet and evaluate the efficiency of the strengthening under load actions. Uniaxal compression tests of concrete compressive members confined with carbon fiber sheet were experimentally used to develop a relationship between the axial stresses and the lateral stresses. The resulting axial and lateral strains were used to determine the confinement effect of concrete compressive members.

  • PDF

Effect of external compressive load during a continuous radio-frequency /vacuum process on movement behavior

  • Lee, Nam-Ho;Jin, Young-Moon
    • 한국가구학회지
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Movement behavior, shrinkage and equilibrium moisture content (EMC), in this experiment reflected a change of hygroscopicity mainly affected by continuously compressive load during radio-frequency/vacuum (RF/V) drying and humidity changes during equilibrating. As a result of interaction of the compressive load and moisture content changing under the RF/V condition, the shrinkages in loading direction were significantly increased while those perpendicular to loading direction were decreased. The shrinkages were affected most in tangential, and least in longitudinal direction. The shrinkages showed higher values in continuous drying than in intermittent drying. In the direction of increased shrinkage, all the movements were also increased, for example, the tangential movement for the loaded-RS and the radial movement for loaded-TS; in the direction of decreased shrinkage, all the movements except the tangential movement for the loaded-TS were decreased such as the tangential and radial movements for the loaded-ES, and the radial movement for the loaded-RS, comparing with those of the load-free. EMCs of the loaded specimens were all higher than that of the load-free specimen, and the highest for the loaded-TS, the lowest for the loaded-ES. The transverse hygroscopicity of specimen was reduced for the loaded-ES, but increased for the loaded-TS.

  • PDF

CPR 공법의 압축재하시험을 통한 기초지반의 보강효과 (Effect of CPR Foundation Reinforcement Assessed by Compressive Loading Tests)

  • 강성승;김정한;노정두;고진석
    • 지질공학
    • /
    • 제29권3호
    • /
    • pp.211-222
    • /
    • 2019
  • 본 연구는 CPR 공법을 적용한 압축재하시험을 통하여 지반의 항복하중과 허용지지력을 평가하여 기초 지반 보강효과를 확인하기 위한 것이다. 주입재의 평균압축강도는 계획된 강도보다 높게 나타났다. 또한 각 지층에서 표준관입시험 결과는 시험 전보다 시험 후의 평균 N값이 향상되었다. 즉, 이것은 지반의 지지력을 증대시키는 효과를 가져왔음을 의미한다. 두 종류의 CPR 말뚝 압축재하시험 결과에 의하면, 최대 재하하중에 의한 전침하량과 순침하량은 CPR 말뚝직경 허용범위를 초과하는 침하량을 나타냈다. 침하량 기준과 하중-침하량 곡선에 의해 산정한 항복하중 및 허용지지력은 적용되는 방법에 따라 값의 편차가 크게 나타났다. 따라서 허용지지력은 다양한 항복하중 산정법을 적용한 후 종합적인 분석을 통하여 최적의 값을 결정할 필요성이 있다고 사료된다.

해진시 개단무리말뚝의 거동에 관한 모형실험 연구 (An Experimental Study on the Behavior of Open-ended Pipe Piles Ggroup to the Simulated Seaquake)

  • 남문석;최용규;김재현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.447-454
    • /
    • 1999
  • The compressive capacity and the soil plugging resistance of single open-ended pipe pile were completely decreased in the previous study on the behavior of shorter single pile during simulated seaquake induced by the vertical component of earthquake. But the capacity of single open-ended pipe pile with greater penetration and the capacity of piles group with shorter penetration were expected to be stable after seaquake motion. In this study, first, 2-piles or 4-piles are driven into the calibration chamber included in saturated fine medium sand with several simulated penetrations, and the compressive load test for each piles group was performed. Then, about 95 % compressive load of the ultimate capacity was applied on the pile head during the simulated seaquake motion. Finally, In confirm the reduction of pile capacity during the simulated seaquake motion, the compressive load test for each single pile or piles group after seaquake motion was performed. During the simulated seaquake, the compressive capacity of open-ended pipe piles with greater penetration ( 〉about 27 m) was not degraded even in deep sea deeper than 220 m and soil plug within open-ended pipe pile installed in deep sea was stable after seaquake motion. Also, in the case of 2-piles or 4-pile groups, the compressive capacity after seaquake motion was not degraded at all regardless of pile penetration depth beneath seabed, sea water depth and seaquake frequency.

  • PDF

들기작업 설계와 평가를 위한 요천추의 Compressive Force 예측모형 비교연구 (Comparison of Three Existing Methods for Predicting Compressive Force on the Lumbosacral Disc)

  • 기도형;정민근
    • 대한산업공학회지
    • /
    • 제21권4호
    • /
    • pp.581-591
    • /
    • 1995
  • The main objective of this study is to compare three representative methods predicting compressive forces on lumbosacral disc : LP-based method, double LP-based method and EMG-assisted method. Two subjects simulated lifting tasks performed in the refractories industry, in which vertical and horizontal distance, and weight of load were varied. To calculate the L5/S1 compressive forces, EMG signals from six trunk muscles were measured and postural data and locations of load were recorded using the Motion Analysis System. The EMG-assisted model was shown to reflect well all three factors considered here. On the other hand, the compressive forces of the LP-based model and the double LP-based model were only significantly affected by weight of load. In addition, lowly positive correlation was observed between compressive forces of the EMG-assisted model and lifting index(LI) of 1991 NIOSH lifting equation. From this results, it can be concluded that compressive forces on L5/S1 by the EMG-assisted method should be used as biomechanical criterion in order to evaluate risk of jobs precisely, and LI can not evaluate risk of lifting tasks fully.

  • PDF

Experimental and analytical investigations of CFFT columns with and without FRP bars under concentric compression

  • Khan, Qasim S.;Sheikh, M. Neaz;Hadi, Muhammad N.S.
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.591-601
    • /
    • 2019
  • This research study investigates experimentally and analytically the axial compressive behaviour of Concrete Filled Fiber Reinforced Polymer Tube (CFFT) columns with and without Fiber Reinforced Polymer (FRP) bars. The experimental program comprises five circular columns of 204-206 mm outer diameter and 800-812 mm height. All columns were tested under concentric axial compressive loads. It was found that CFFT columns with and without FRP bars achieved higher peak axial compressive loads and corresponding axial deformations than conventional steel reinforced concrete (RC) column. The contribution of FRP bars was about 12.1% of the axial compressive loads carried by CFFT columns reinforced with FRP bars. Axial load-axial deformation ($P-{\delta}$) curves of CFFT columns were analytically constructed, which mapped well with the experimental $P-{\delta}$ curves. Also, an equation was proposed to predict the axial compressive load capacity of CFFT columns with and without FRP bars, which adequately considers the contributions of the circumferential confinement provided by FRP tubes and lower ultimate strength of FRP bars in compression than in tension.

점하중시험을 이용한 국내 암석의 일축압축강도산정 연구 (Estimation for the Uniaxial Compressive Strength of Rocks in Korea using the Point Load Test)

  • 김학준
    • 터널과지하공간
    • /
    • 제28권1호
    • /
    • pp.72-96
    • /
    • 2018
  • 암반에서 공사를 수행하는 경우에는 공사의 안정성 확보를 위하여 대상 암반의 일축압축강도를 정확히 평가해야 한다. 그러나 일축압축강도를 산정하기 위해서는 많은 비용과 시간이 필요하다. 또한 현장에서는 암석의 일축압축강도시험을 수행할 수 없다는 문제점이 있다. 이러한 문제를 해결하기 위해 점하중강도 시험을 이용하여 암석의 일축압축강도를 산정하는 방법이 외국의 많은 연구자들에 의하여 조사되었다. 그러나 외국의 암석에서 얻어진 연구결과를 그대로 국내에서 적용하는 것은 신뢰성에 문제가 있을 수 있다. 본 연구에서는 국내 암석에 대한 점하중강도지수와 일축압축강도의 상관관계를 광범위한 국내 외 문헌조사와 실내시험 결과를 통하여 도표로 제시하였다. 본 연구결과는 국내 암석의 일축압축강도를 간편하고 신속하게 추정하는데 활용될 수 있을 것으로 기대된다.

AI 원형 관의 2축 압축 변형특성에 미치는 압축속도의 영향 (The effect of compressive strain rate on biaxial compressive deformation characteristics of Al circular pipe)

  • 원시태;정현진;안희준;조황현;유종근
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.23-26
    • /
    • 2008
  • In order to examine the deformation characteristics of Al circular pipe underthe biaxial compression, the horizontal biaxial compression die for the experiment was manufactured. From this, in the various compressive strain rate (1 mm/min. ${\sim}$ 400 mm/min.)conditions, the circular pipes, which were made by Al materials, were investigated based on the properties change of cross section area, punch load and deformation behavior. The tensile and compressive strains were evaluated from micro Vickers hardness tester. From these results, the punch load and deformation characteristic of Al circular pipes were highly changed in the compressive strain rate about 200 mm/min. The Al circular pipes had the tendency that the punch load decreased with increasing the compressive strain rate. In addition, following as the change of the shape and position of neutral axis due to the deformation proceeding of the circular pipe, the special point of the internal circular pipe at maximum load showed the maximum deformation strain and the maximum measured hardness value. The CAE (computer aided engineering) simulation using Deform-2D program was performed on the circular pipe in order to know and verify the exact compressive deformation behavior. From these results, the experimentally measured results were reasonably in good agreement with the simulation results.

  • PDF