• 제목/요약/키워드: Compressive fatigue

검색결과 356건 처리시간 0.022초

고강도콘크리트의 피로거동에 관한 실험적 연구 (Experiments for the Fatigue Behavior of High Strength Concrete)

  • 김진근;김윤용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 1992
  • In this paper, the effect of compressive strength on the fatigue behavior of plain concrete was studied. The fatigue behavior of plain concrete in uniaxial compression is somewhat affected by the compressive strength of the concrete. Concrete cylindrical specimens(100$\times$200mm) with compressive strength of 265kg/$\textrm{cm}^2$, 530kg/$\textrm{cm}^2$ , 860kg/$\textrm{cm}^2$ and 1053kg/$\textrm{cm}^2$ were tested and analyzed on the fatigue strength, In addition to fatigue strength, the deformation characteristics of the concrete subjected to fatigue loading was investigated. The fatigue strength was decreased for the high-strength concrete. The deformation studies indicated that the irrecoverable strain in normal strength concrete is greater than that in high strength concrete.

  • PDF

A probabilistic fatigue failure analysis for FRSCC with Granite sawing waste

  • K, Aarthi.;K, Arunachalam.;S, Thivakar.
    • Computers and Concrete
    • /
    • 제18권5호
    • /
    • pp.969-982
    • /
    • 2016
  • This paper investigates the compressive fatigue behaviour of polypropylene fibre reinforced self compacting concrete with Granite Sawing Waste (GSW). An experimental programme was conducted to obtain the fatigue lives of fibre reinforced self compacting concrete (FRSCC) at various stress levels. The stress ratio was kept constant as 0.3. Compressive fatigue test was conducted on 60 cubic specimens with 100mm edge length and 0.1% of polypropylene fibres at a frequency of 0.05Hz. The test results indicate that the fatigue lives of concretes containing granite sawing waste follow the double-parameter Weibull distribution. The fatigue strength equations have been developed based on different probabilities of failure.

열처리된 스프링강의 피로수명 개선을 위한 쇼트피닝 가공 효과 (Effect of Shot Peening on Fatigue Life of Heat Treated Spring Steel)

  • 이승호;심동석
    • 열처리공학회지
    • /
    • 제17권6호
    • /
    • pp.336-341
    • /
    • 2004
  • The effect of shot peening conditions on the fatigue properties of heat-treated spring steel has been investigated by using residual stress measurement and metallography. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength and fatigue life increased about 20% to 40% by 1-step and 2-step shot peening process. The fatigue strength and life were closely related to the value and position of maximum compressive residual stress by shot peening process. In the case of warm shot peening, compressive residual stress of specimens shot peening processed at $200^{\circ}C$ was higher than those of specimens shot peening processed at room temperature, $100^{\circ}C$ and $300^{\circ}C$.

현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향 (Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material)

  • 정재욱;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.353-358
    • /
    • 2004
  • We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{circ}C$, $-60^{circ}C$, $-80^{circ}C$, and $-100^{circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. And there is a difference between shot peened specimen and unpeened specimen. The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. Fatigue crack growth rate of shot peened metal was lower than that of unpeened metal. The compressive residual stress made an impact on tension and compression of the plasticity deformation in fatigue crack plasticity zone. That is. the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

  • PDF

현가장치재의 피로수명향상 공법개발에 관한 연구 (A Study of Development Methods of Fatigue Life Improvement for the Suspension Material)

  • 박경동;정찬기
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

쇼트피닝에 의한 재료의 특성에 관한 연구 (Study on the characteristics of shot peened material)

  • 이승호
    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.15-22
    • /
    • 1998
  • The effects of shot peening an the fatigue strength are studied in this paper. Applying the multistage shot peening on the material. the relation between the residual stress and fatigue strength compressive is investigated. Observing tensile strength elongation. reduction of area. hardness. and roughness. the results can be summarized as follows ; 1.The change of mechanical properties is small before and after the shot peening is carried out. The change of hardness is also small in high hardness material. 2.The surface roughness does not affect the fatigue strength. but the surface roughness is improved by multi-stage shot peening. 3.The fatigue strength of multi-stage shot peening material is 756MPa and is 1.78 times higher than that of un-peened material. 4.The maximum compressive residual strength of multi-stage shot peening material is -792MPa the fatigue strength seems to be improved by residual stress.

  • PDF

현가장치재의 부식피로균열진전에 미치는 쇼트피닝의 영향 (An Effect of Shot Peening on Corrosion Fatigue Crack Growth of Suspension Material)

  • 박경동;안재필
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.88-94
    • /
    • 2006
  • The compressive residual stress, which is induced by shot peening process, has the effect of increasing the intrinsic fatigue strength of surface and therefore would be beneficial in reducing the probability of fatigue damage. However, the effect of shot peening in corrosion environment was not known. In this study, investigated is the effect of shot peening on corrosion fatigue crack growth of SAE 5155 steel immersed in 6% $FeCl_3$ solution and corrosion characteristics with considering fracture mechanics. The results of the experimental study corrosion fatigue characteristics of SAE 5155 are as follows; the fatigue crack growth rate of the shot peening material was lower than that of the non-peening material. And fatigue life shows more improvement in the shot peening material than in non-peening material. This is due to the compressive residual stress of surface increases resistance of corrosion fatigue crack propagation. It is assumed that the shot peening process improve corrosive resistance and mechanical property.

溶接殘留應力領域에서의 疲勞균열傳播에 대한 Forman式의 適用 (The application of forman equation for fatigue crack propagation in welding residual stress region)

  • 김상철;이용복
    • Journal of Welding and Joining
    • /
    • 제5권1호
    • /
    • pp.42-56
    • /
    • 1987
  • Fatigue Fracture behaviors of the TIG-welded aluminum alloys, such as Al 2024-T4, A1 5050-0 and Al 7075-T7 were investigated when a crack propagated from tensile residual stress region and compressive residual stress region. The experimental values were compared with the values expected by the Forman equation. The experimental results are summarized as the following: (1) In case of fatigue crack propagation from residual stress region, the values predicted by Forman equation were Found to exactly corresponded to the experimental values. (2) When the stress intensityfactors affected by compressive residual stress, Kres, were greater than the stress intensity factors by minimum applied stresses. Kmin, the Forman equation was found to be improper to be applied directly, but the equation appeared to be proper, if the stress ratio was modified to zero. (3) The experimental results confirmed that residual stress was relaxed by repeated tensile loading and the relaxing trend was greater in case of compressive residual stress than that of tensile residual stress.

  • PDF

압축잔류응력이 스프링강의 고온환경 피로균열 진전거동에 미치는 영향 (Effect of Compressive Residual Stress on the High Temperature fatigue Crack Propagation Behavior of Shot-peened Spring Steel)

  • 정찬기;박경동
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, the effect of the compressive residual stresses was obtained at the test conditions of the higher temperature than the ambient temperature. The examination was performed with the CT specimen result of the material(JISG SUP9) which is being commonly used for the marine engine parts and the ocean structures. As a result, the test conditions at the higher temperature were acquired considering the peak values of the compressive residual stresses of the specimens and the effect on the fatigue crack propagation speed da/dN in stage II and the threshold stress intensity factor range Δth in stage I. Also the material constant C and the fatigue crack propagation index m in the formula of Paris Law da/dN=C (ΔK)$^{m}$ were suggested to estimate the dependence on the test temperature.

쇼트피닝 가공한 스프링강의 고온 피로 파괴 특성에 관한 연구 (Characteristics of High Temperature Fatigue Fracture in Spring Steels after Shot Peening)

  • 박경동;신영진
    • 한국안전학회지
    • /
    • 제21권4호
    • /
    • pp.1-6
    • /
    • 2006
  • The lightness of components that was required in automobile and machinery industry requires high strength of components. In particular, manufacturing process and new materials development for solving the fatigue facture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9)by shot-peening on fatigue crack growth characteristics in high temperature($100^{\circ}C,\;150^{\circ}C,\;180^{\circ}C$)was investigated with considering fracture mechanics. So, we can obtaint the followings. (1) Compressive residual stress is decreased with increasing the test temperature. (2) The effect of compressive residual stress on fatigue crack growth behavior in high temperature is increased below ${\Delta}K=17{\sim}19MPa{\sqrt{m}}$. (3) It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.