• Title/Summary/Keyword: Compressive bending strength

Search Result 438, Processing Time 0.021 seconds

Comparison of Physical Properties of Permeability Concrete Using Acrylic Polymer (아크릴 폴리머를 사용한 투수 콘크리트의 물성 비교 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.265-271
    • /
    • 2019
  • The aim of this paper was to improve the shortcomings of Pitcher Concrete, a conventional ethylene-based polymer used in combination with the other components, and present basic data for use as improved road pavement material by applying an acrylic polymer. Existing ethylene polymer-based pitcher concrete materials were selected. Acrylic polymer was then added and the resulting mixture was evaluated. The compressive strength of the existing ethylene-based polymer pitcher concrete combination was low due to the large air gap, and a compressive strength of 24MPa was observed on the 28th day of road use, as defined by KS for an acrylic polymer-based pitcher concrete combination. Regarding the bending strength, the combined strength of the acrylic polymer-based pitcher concrete was excellent, and the factor of the pitcher was measured above the reference, 0.1(mm/s), in all variables. All parameters measured were less than 1%. The acrylic polymer mixing characteristics were able to maintain the dynamic modulus of elasticity for more than 120 cycles, but not more than 80 cycles for the other combinations. Therefore, the addition of more acrylic polymer than conventional ethylene polymer base is effective in improving the durability.

Properties of Advanced Synthetic Fiber Reinforced Concrete for Improvement of Tunnel Shotcrete Performance (터널 숏크리트 성능 향상을 위한 고기능성 합성섬유 보강 콘크리트의 물성 평가)

  • Jeon, Chanki;Jeon, Joongkyu
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • The Application of Steel Fiber Shotcrete in tunneling construction has become part of tunneling practice at least since the 1970s because of its high bending and tensile properties. Over the past 3 decades, researcher from all over the world have been significantly developing the associated technologies for improved performance of SFRS. But still it has some major drawbacks in terms of durability, damage of pumping hose, wastage due to rebound concrete, corrosion and it costs high. To overcome this situation researcher has to look for some alternative material. Therefore, this part study deals with the three types of fiber in order to find good alternative for steel fiber. Polyamide and Polypropylene fiber were used in this study with 0.6, 0.5% mixing ratio. To evaluate its fresh and harden properties air content, slump, compressive, split tensile and bending strength were measured. After comparing the results of all three types of fiber reinforced concrete with its different mixing proportion this study propose that polyamide fiber with addition ratio of 0.6 % for field use.

Studies on the Effects of Curing Temperature on the Strength of Briquette Ash Hardened by Cement (양생온도(養生溫度)가 Cement로 경화(硬化)시킨 연탄재 Mortar의 강도(强度)에 미치는 영향(影響)에 관한 연구(硏究))

  • Kim, Seong Wan;Kang, Sin Up
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.119-130
    • /
    • 1980
  • This study was conducted to determine the effect of curing temperature on the strength of briquette ash mortar hardened by cement. The six different kinds of briquette ash mortars were made by mixing the cement : briquette ash, ((cement (90%)+lime (10%)) : briquette ash and cement : standard sand at the ratio of 1:2, 1:3, 1:4, 1:5, 1:7, and 1:9, respectively and the cu ring temperatures were $20^{\circ}C$, $30^{\circ}C$, and $35^{\circ}C$. The strength of compression, bending and tensile were measured at ${\sigma}_7$ and ${\sigma}_{28}$. The summarized results were as follows. 1. At the ${\sigma}_7$ of 1:2 the compressive strength of the cement : briquette ash and (cement+lime) : briquette ash were 69.3% and 75.1%, respectively of the mortar made of the standard sand. At the ${\sigma}_{28}$ the strength of those materials were 56.4% and 49.0%, respectively. 2. At the ${\sigma}_7$ of 1:2 the tensile strength of the cement : briquette and (cement+lime) : briquette ash were 64.4% and 47.1%, respectively of the mortar made of standard sand. At the ${\sigma}_{28}$ the tensile strength of those materials were 69.6% and 64.8%, respectively. 3. At the ${\sigma}_7$ of 1:2 the bending strength of the cement : briquette ash and (cement+lime) : briquette ash were 46.3% and 65.9%, respectively of the mortar made of the standard sand. At the ${\sigma}_{28}$ the strength of those materials were 89.9% and 96.7%, respectively. 4. The increment of strength per $1^{\circ}C$ increase of curing temperature were on the average $0.92{\sim}1.75kg/cm^2$ of compressive strength, $0.12{\sim}0.16kg/cm^2$ of the tensile strength and $0.21{\sim}0.38kg/cm^2$ of the bending strength.

  • PDF

An Effect of Warm Shot Peening on the Fatigue Behavior of Suspension Coil Springs (현가장치용 코일스프링의 피로특성에 미치는 온간쇼트피닝 가공의 영향)

  • Kim, Ki-Jeon;Chung, Suk-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1209-1216
    • /
    • 2002
  • The requirements of coil spring fer higher fatigue strength have been increased to achieve the weight reduction of a vehicle. As the possible increase in fatigue strength by using the conventional shot peening treatment is found to be limited, it is necessary to modify the shot peening treatment. The warm shot peening is a shot peening treatment carried out within warm temperature range. The aim of this paper is to analyze some experimental results concerned with the effect of warm shot peening and to discuss the mechanism of warm shot peening in detail. By the results of rotating bending fatigue test, the fatigue strength of test specimen increases up to 23.8% in the production condition of warm shot peening at 200$\^{C}$ compared with conventional shot peening. The major reason why the warm shot peening is effective to the improvement of fatigue strength is the increase of a compressive residual stress distribution, which can be caused by more effective deformation under the condition of warm temperature.

A Study on Material Properties of Composite Panel for Impact·Blast Resistance (방호·방폭 보강용 복합패널의 재료특성에 관한 연구)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.373-380
    • /
    • 2016
  • In order to develop composite fiber panels that can maximize the protection and blast resistance of the existing structures by improving lightweight, high-strength and fireproof performances of the single layer material of precast panels, the basic properties of the inner and outer covers that are mixed with aramid fibers (AF) and polyester fibers (PF) were evaluated in this study. Also, a basic study was performed on the performance of composite fiber panels by testing Nano-sized composite materials that are lightweight and excellent in fire resistance for their compressive strength, bending strength and tensile strength.

Influence of Various Powder of OPC Received in Concrete Plant on Strength Characteristics of Cured Mortar (레미콘 공장에 입고되는 OPC의 다양한 분말도 변화가 경화 모르타르의 강도 특성에 미치는 영향)

  • Lee, Jae-Jin;Kim, Min-Sang;Hyun, Seong-Yong;Kim, Yeong-Tae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.115-116
    • /
    • 2017
  • According to the experimental results of researchers recently seen, there is a case where a significant difference between data of several reports and measured powder is detected, and concrete examination on this is necessary. In this study, we compare the actual powdered degree of powdered aid on the report against 20 OPCs that are actually being brought into the raw concrete plant, and the OPC powder also influences the difference of OPC powder's strength characteristics on hardened mortar Was analyzed. As a result of the analysis, doubts were raised on the reliability of the OPC powder degree described on the certificate, and the bending and compressive strength tended to increase as the degree of fineness of the measured OPC increased.

  • PDF

Physical Properties of ALC with Various Fineness of Quartzite (규석 분말도에 따른 ALC의 물리적 특성 변화)

  • Chu, Yong-Sik;Jung, Ui-Jong;Song, Hun;Lee, Jong-Kyu;Kim, Young-Gon;Kang, Dae-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.407-411
    • /
    • 2010
  • ALC was fabricated using cement, lime and quartzite by hydrothermal reaction. ALC has low strength and brittleness on account of inner pores. The studies for resolving these problems were driven by many researchers. Among these researches, the controls of quartzite fineness have been studied for unsuitable properties of ALC. This study experimented with variation of 90 ${\mu}m$ residue for obtain good physical properties. It was found that 90 ${\mu}m$ residue influenced on physical properties of ALC. The lower amount of 90 ${\mu}m$ residue, the higher compressive and bending strength. But the continuing decrease of 90 ${\mu}m$ residue did not cause the increase of strength. In order to application of these results in process, the states of process and hydrothermal products will be considered.

Properties of hydroxyapatite sintered body added with plasticizer (Hydroxyapatite 소결체의 가소제 첨가에 따른 특성)

  • Ryu, Su Chark;Kim, Jae Kyu;Kim, Seung Hyeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.167-172
    • /
    • 2019
  • The strength (MPa), hardness (Hv), shrinkage (%) and biological properties of the HAp were measured by using an organic plasticizer which facilitates the molding and heat treatment. Mechanical properties such as compressive strength, bending strength and hardness were increased with increasing amount of plasticizer, but mechanical properties were decreased when plasticizer was added more than 7 %. This is because addition of the plasticizer above the allowable value causes cracking during molding, and such cracks promote the generation of microcracks and pores at the time of sintering, resulting in a decrease in mechanical properties. As a result of the antimicrobial activity test, no bacteria were detected regardless of the addition amount of plasticizer.

Effect of Resin Impregnation Ratio on the Properties of Ceramics Made from Miscanthus sinensis var. purpurascens Particle Boards (수지함침율이 거대억새 파티클보드로 제조된 세라믹의 성질에 미치는 영향)

  • HWANG, Jung-Woo;PARK, Hee-Jun;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.360-370
    • /
    • 2021
  • For the purpose of finding new uses for Miscanthus sinensis var. purpurascens, this study first constructed boards with the particles of the plant and impregnated them with phenolic resin at resin impregnation rates of 30 ± 2%, 40 ± 2%, 50 ± 2%, and 60 ± 2%. The impregnated boards were then carbonized at the carbonization temperature of 800℃, after which their density and mechanical properties were examined according to the different resin impregnation rates. The results showed that density, flexural strength performance, Brinell hardness, and compressive strength increased as the resin impregnation rate increased, thus affecting the physical and mechanical properties of the ceramics made of M. sinensis var. purpurascens particles.

Performance Evaluation of Bending Strength of Curved Composite Glulams Made of Korean White Pine (잣나무 만곡 복합집성재의 휨강도 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.463-469
    • /
    • 2015
  • In this study, to improve bending strength performance of Korean white pine, we made the curved composite glulam that was reinforced with glass fiber materials and larch lamina. Five types of Korean white pine curved glulams were made depending on whether they had been reinforced or not and how they had been reinforced. Type-A, reference specimen, was produced only with Korean white pine lamina, and Type-B was with larch lamina in the same thickness. Type-C was made by inserting a glass fiber cloth of textile shape between the each layer. Type-D was reinforced with two glass fiber cloths, which were placed inside and outside of the outermost lamina. Type-E was reinforced with GFRP sheet in the same way as Type-D. As a result of this bending strength test, the modulus of rupture (MOR) of Type-B, Type-C and Type-E were increased by 29%, 6%, and 48% in comparison with Type-A. However, MOR of Type-D was decreased by 2% in comparison with Type-A. In the failure modes, Type-A, Type-B and Type-C were totally fractured at the maximum load. However, load values of Type-D and Type-E decreased slowly because of reinforcement of fracture suppression, and the GFRP sheet (Type-E) had better reinforcing effect on compressive stress and tensile stress than the glass fiber cloth (Type-D).