• Title/Summary/Keyword: Compressive and Bending Residual Strength

Search Result 35, Processing Time 0.023 seconds

건축구조용 냉간성형 강관의 가공성능 평가 (Evaluation of Forming Performance of Cold Rolled Steel Pipes & Tubes for Building Structure)

  • 임성우;최광;장인화
    • 한국강구조학회 논문집
    • /
    • 제16권1호통권68호
    • /
    • pp.33-42
    • /
    • 2004
  • SN 강재를 건축구조용으로 사용하기 위해서는 설계기준강도가 제정되어야 한다. 선행 연구로써, SN400B/490B 후판재로 재판한 SN400B/490B 원형강관과 SPAP235/325 및 SPAR295 각형강관의 물성을 평가하였다. SN400B/490B 후판재와 비교했을 때 STKN400B/490B 원형강관의 항복인장 및 인장강도는 상승하였지만, 제조 프로세스에 무관하게 STKN400B/490B 원형강관의 규격을 만족 하였다. 그러나 SPAP235/325 각형강관 모서리부에서의 항복인장 및 인장강도는 규격을 벗어났다. 이것은 SPAP235/325 각형강관 규격에서 정하고 있는 값이 모서리부에서의 값이 아니라 변에서의 값이기 때문이다. STKN490B 원형강관에 발생한 최대 인장잔류응력은 모재 항복강도 수준이며, 최대 압축잔류응력은 모재 항복강도의 40% 수준이었다. 또한 SPAP325 각형강관에 발생한 최대 인장잔류응력과 최대 압축잔류응력은 모두 모재 항복강도의 80% 수준이었다. 중심압축실험을 한 결과 STKN490B 원형강관의 좌굴강도는 제조 프로세스에 관계없이 별 차이를 보이지 않았다. 그러나 각형강관의 경우는 SPAP325 각형강관이 SN490B로 built-up한 각형강관보다 좌굴강도가 높게 나타났다.

SUP7 및 SAE9254강의 피로강도에 미치는 압축잔류응력의 영향 (The effect of compress residual stresses of shot peening for fatigue strength of SUP7 and SAE9254 steel)

  • 박경동;정찬기
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.67-73
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of two-stage shot peening iud single-stage shot peening for two kinds of spring steel(SUP7, SAE9254). This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from decreasing the surface roughness unchanging the surface hardness increasing the compressive residual stress. Results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel

  • Xuetao Lyu;Weiwei Wang;Huan Li;Jiehong Li;Yang Yu
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.383-401
    • /
    • 2024
  • The research comprehensively studies the axial compression performance of T-shaped concrete-filled thin-walled steel tubular (CTST) long columns after fire exposure. Initially, a series of tests investigate the effects of heating time, load eccentricity, and stiffeners on the column's performance. Furthermore, Finite Element (FE) analysis is employed to establish temperature and mechanical field models for the T-shaped CTST long column with stiffeners after fire exposure, using carefully determined key parameters such as thermal parameters, constitutive relations, and contact models. In addition, a parametric analysis based on the numerical models is conducted to explore the effects of heating time, section diameter, material strength, and steel ratio on the axial compressive bearing capacity, bending bearing capacity under normal temperature, as well as residual bearing capacity after fire exposure. The results reveal that the maximum lateral deformation occurs near the middle of the span, with bending increasing as heating time and eccentricity rise. Despite a decrease in axial compressive load and bending capacity after fire exposure, the columns still exhibit desirable bearing capacity and deformability. Moreover, the obtained FE results align closely with experimental findings, validating the reliability of the developed numerical models. Additionally, this study proposes a simplified design method to calculate these mechanical property parameters, satisfying the ISO-834 standard. The relative errors between the proposed simplified formulas and FE models remain within 10%, indicating their capability to provide a theoretical reference for practical engineering applications.

강섬유보강콘크리트의 내화성에 관한일실험 (Fire Resistance Test of Steel Fiber Reinforced Concrete)

  • 윤재환
    • 한국화재소방학회논문지
    • /
    • 제1권1호
    • /
    • pp.19-26
    • /
    • 1987
  • In this study, fire resistance of steel fiber reinforced concrete was investigated Cylindrical and prismatic specimens made of Ordinary Portland Cement plain concrete and steel fiber reinforced concrete were exposed to heating in accordance with a standard time-temperature curve as specified in KS·F22 57, method of fire resistance test for structural parts of buildings, the period of heating was 1 hour and 2 hours. After the fire resistance test, mechanical properties of specimens such as compressive and bending strength, stress-strain curve, static and dynamic modulus of elasticity and bending toughness were investigated. Also the cracks and spallings of the specimens were observed. From the test results, it was confirmed that steel fiber reinforced concrete has a excellent fire resistance than plain concrete in the view of higher residual strength of concrete and smaller crackings because of steel fibers in concrete.

  • PDF

Nondestructive Testing of Residual Stress on the Welded Part of Butt-welded A36 Plates Using Electronic Speckle Pattern Interferometry

  • Kim, Kyeongsuk;Jung, Hyunchul
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.259-267
    • /
    • 2016
  • Most manufacturing processes, including welding, create residual stresses. Residual stresses can reduce material strength and cause fractures. For estimating the reliability and aging of a welded structure, residual stresses should be evaluated as precisely as possible. Optical techniques such as holographic interferometry, electronic speckle pattern interferometry (ESPI), Moire interferometry, and shearography are noncontact means of measuring residual stresses. Among optical techniques, ESPI is typically used as a nondestructive measurement technique of in-plane displacement, such as stress and strain, and out-of-plane displacement, such as vibration and bending. In this study, ESPI was used to measure the residual stress on the welded part of butt-welded American Society for Testing and Materials (ASTM) A36 specimens with $CO_2$ welding. Four types of specimens, base metal specimen (BSP), tensile specimen including welded part (TSP), compression specimen including welded part (CSP), and annealed tensile specimen including welded part (ATSP), were tested. BSP was used to obtain the elastic modulus of a base metal. TSP and CSP were used to compare residual stresses under tensile and compressive loading conditions. ATSP was used to confirm the effect of heat treatment. Residual stresses on the welded parts of specimens were obtained from the phase map images obtained by ESPI. The results confirmed that residual stresses of welded parts can be measured by ESPI.

플라즈마 이온질화한 SACM645 강의 미세조직 및 피로균열 발생의 해석 (The Analysis of Fatigue Crack Initiation and Microstructure of Plasma Ion Nitrided SACM645 Steel)

  • 김경태;권숙인
    • 열처리공학회지
    • /
    • 제9권1호
    • /
    • pp.69-77
    • /
    • 1996
  • The fatigue crack initiation behavior of plasma ion nitrided SACM645 steel was investigated through the rotary bending fatigue test and residual stress measurement by XRD. It was shown by XRD and EPMA that the plasma ion nitrided surface was composed of ${\gamma}^{\prime}(Fe_4N)$phase and ${\varepsilon}(Fe_{2-3}N)$phase, and that the nitrogen atoms existed in Fe matrix in diffusion layer. The OM, SEM and Auger spectroscopy showed that the depth of compound layer, mixed compound and diffusion layer, and diffusion layer was $8{\mu}m$, $30{\mu}m$ and $300{\mu}m$, respectively. However, the microhardness test showed that the depth of hardened layer was $500{\mu}m$. The tensile strength of the ion nitrided SACM645 was lower than that of the unnitrided SACM645, and the ion nitrided specimen was fractured without plastic deformation. The nitrided SACM645 showed much poorer low cycle fatigue properties than the unnitrided one. In rotary bending fatigue, the fatigue strength of the ion nitrided SACM645 was higher than that of the unnitrided specimen, and the fatigue crack initiation sites changed by applied fatigue stress levels. The XRD result showed that the ion nitrided SACM645 has the compressive residual stress from surface to $600{\mu}m$ deep and the tensile residual stress from $600{\mu}m$ to deeper site. It is thought that crack initiation takes place at the point where the total stress of residual stress and applied stress is maximum.

  • PDF

현가장치용 코일스프링의 피로특성에 미치는 온간쇼트피닝 가공의 영향 (An Effect of Warm Shot Peening on the Fatigue Behavior of Suspension Coil Springs)

  • 김기전;정석주
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1209-1216
    • /
    • 2002
  • The requirements of coil spring fer higher fatigue strength have been increased to achieve the weight reduction of a vehicle. As the possible increase in fatigue strength by using the conventional shot peening treatment is found to be limited, it is necessary to modify the shot peening treatment. The warm shot peening is a shot peening treatment carried out within warm temperature range. The aim of this paper is to analyze some experimental results concerned with the effect of warm shot peening and to discuss the mechanism of warm shot peening in detail. By the results of rotating bending fatigue test, the fatigue strength of test specimen increases up to 23.8% in the production condition of warm shot peening at 200$\^{C}$ compared with conventional shot peening. The major reason why the warm shot peening is effective to the improvement of fatigue strength is the increase of a compressive residual stress distribution, which can be caused by more effective deformation under the condition of warm temperature.

진수후 데크 topside 용접부의 응력 거동 특성에 관한 연구 (A Study on the Characteristic of Stress Behavior of Topside Weldment Welded after Launching)

  • 이동주;신상범
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.58-58
    • /
    • 2010
  • The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.

  • PDF

고온 열순환 공정이 BCB와 PECVD 산화규소막 계면의 본딩 결합력에 미치는 영향에 대한 연구 (A Study on the Effects of High Temperature Thermal Cycling on Bond Strength at the Interface between BCB and PECVD SiO2 Layers)

  • 권용재;석종원
    • Korean Chemical Engineering Research
    • /
    • 제46권2호
    • /
    • pp.389-396
    • /
    • 2008
  • 벤조시클로부텐(benzocyclobutene; BCB)과 플라즈마 화학기상증착(PECVD)된 산화규소막이 코팅된 웨이퍼들 사이의 계면에서, 고온 열순환 공정에 의한 잔류응력 및 본딩 결합력의 효과를 4점 굽힙시험법과 웨이퍼 곡률 측정법에 의해 평가하였다. 이를 위해 웨이퍼들은 사전에 확립된 표준 본딩공정에 의거하여 본딩하였으며 이들 웨이퍼에 대한 열순환 공정은 상온으로부터 최대 순환온도 사이에서 수행하였다. 최대 온도 350 및 $400^{\circ}C$에서 수행한 열순환 공정에서, 본딩 결합력은 첫번째 순환공정 동안 크게 증가하는 데, 이는 순환공정 시 발생하는 산화규소막의 축합 반응에 의한 잔류응력 감소 때문인 것으로 분석되었다. 이러한 산화규소막의 잔류응력이 감소함에 따라 BCB와 산화규소막으로 구성된 다층막의 잔류응력에 의해 변형되는 에너지는 상승하였고 따라서 BCB와 산화규소막 사이 다층막의 의 본딩 결합력은 증가하였다.

수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究) (Mechanical and Rheological Properties of Rice Plant)

  • 허윤근;차균도
    • 농업과학연구
    • /
    • 제14권1호
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF