• Title/Summary/Keyword: Compressive Strength of Concrete Core

Search Result 177, Processing Time 0.023 seconds

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.

Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines

  • Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.347-359
    • /
    • 2020
  • The objective of this study is to experimentally scrutinize the axial performance of built-up concrete filled steel tube (CFT) columns composed of steel plates. In this case, the main parameters cross section types, compressive strength of filled concrete, and the effect of welding lines. Welded built-up steel box columns are fabricated by connecting two pieces of cold-formed U-shaped or four pieces of L-shaped thin steel plates with continuous penetration groove welding line located at mid-depth of stub column section. Furthermore, traditional square steel box sections with no welding lines are investigated for the comparison of axial behavior between the generic and build-up cross sections. Accordingly, 20 stub columns with thickness and height of 2 and 300 mm have been manufactured. As a result, welding lines in built-up specimens act as stiffeners because have higher strength and thickness in comparison to the plates. Subsequently, by increasing the welding lines, the load bearing capacity of stub columns has been increased in comparison to the traditional series. Furthermore, for specimens with the same confinement steel tubes and concrete core, increment of B/t ratio has reduced the ductility and axial strength.

Flexural Behaviors of Sandwich Panels of Polymer Mortar Reinforced with GFRP (GFRP보강 폴리머 모르타르 샌드위치 패널의 휨 거동)

  • 지경용;연규석;유근우;김남길;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.159-164
    • /
    • 2001
  • In this study, a polymer mortar sandwich panel (PMSP) was developed : Core was made with the polymer mortar whose compressive strength was about 840 kgf/$\textrm{cm}^2$, and both facings were made with the glass fiber reinforced plastics (GFRP). The results showed that the strain energies and the ductility indices increased 16-340 times and 2-8 times, respectively, as the thicknesses of facings increased from 0.6 to 3.0mm with fixing the core thickness to constants (12-36mm). On the other hand, these values showed a tendency of decrease as the core thickness increased regardless of thickness of facings. A set of basic data for the structural analysis could be provided by investigating the correlations, within the scope of this research, between the resisting moment and the thicknesses of core and facings.

  • PDF

Flexural Behavior of Sandwich Panels Using MMA Modified Polymer and GFRP (GFRP보강 MMA개질 폴리머 모르타르 샌드위치 패널의 휨 거동)

  • 연규석;유근우;주명기;김남길;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.105-110
    • /
    • 2002
  • In this study, a MMA modified polymer mortal sandwich panels was developed : Core was made with the MMA modified polymer mortar whose compressive strength was about 1020 kgf/cm$^2$, and both facings were made with the glass fiber reinforced plastics (GFRP). The results showed that the strain energies increased 20-33 times, respectively, as the thicknesses of facings increased from 1.50 to 2.76 mm with fixing the core thickness to constants (30-50 mm). On the other hand, these values showed a tendency of decrease as the core thickness increased regardless of thickness of facings. A set of basic data for the structural analysis could be provided by investigating the correlations, within the scope of this research, between the resisting moment and the thicknesses of core and facings.

  • PDF

Quality Evaluation of shotcrete due to Properties of Steel Fiber (강섬유 특성이 숏크리트 품질에 미치는 영향)

  • Ryu, Jong-Hyun;Kim, Dong-Weon;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.673-676
    • /
    • 2006
  • Steel FibreReinforced Shotcrete(SFRS) is one of the main tunnel support along with the rock bolt during the excavation and after the completion of the tunnel. In the standard qualification of the SFRS defined by Korea Highway Corporation, 28 day core specimen has to meet the compressive strength of 19.6 MPa and over 90 % fibre contents. Furthermore, for the 28 days brick shaped specimen made by shooting, flexural strength should be over 4.4 MPa and flexural toughness ratio which can be calculated from flexural toughness factor has to meet more than 68% of flexural strength. In shotcrete, accelerating agent is added for the rapid strength development. Silicate and aluminate type agents are known to develop shotcrete strength rapidly, however, has such problem to degrade the middle and long term strength. Hence, using poly carboxylic super plasticizer, it was aimed to enhance the quality of the shotcrete with the lower water-cement ratio and the same level of workability. The present paper shows the part of the field test result and its analysis.

  • PDF

Elevated temperature resistance of concrete columns with axial loading

  • Alaskar, Abdulaziz;Alyousef, Rayed;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.355-365
    • /
    • 2020
  • The influence of temperature on the material of concrete filled columns (CFCs) under axial loading has been quantitatively studied in this research. CFCs have many various advantages and disadvantages. One of the important inefficiency of classic CFCs design is the practical lack of hooped compression under the operational loads because of the fewer variables of Poisson's rate of concrete compared to steel. This is the reason why the holder tends to break away from the concrete core in elastic stage. It is also suggested to produce concrete filled steel tube columns with an initial compressed concrete core to surpass their design. Elevated temperatures have essentially reduced the strengths of steel tubes and the final capacity of CFCs exposed to fire. Thus, the computation of bearing capacity of concrete filled steel tube columns is studied here. Sometimes, the structures of concrete could be exposed to the high temperatures during altered times, accordingly, outcomes have shown a decrement in compressive-strength, then an increase with the reduction of this content. In addition, the moisture content at the minimal strength is declined with temperature rising. According to Finite Element (FE), the column performance assessment is carried out according to the axial load carrying capacities and the improvement of ductility and strength because of limitations. Self-stress could significantly develop the ultimate stiffness and capacity of concrete columns. In addition, the design equations for the ultimate capacity of concrete columns have been offered and the predictions satisfactorily agree with the numerical results. The proposed based model (FE model of PEC column) 65% aligns with the concrete exposed to high temperature. Therefore, computed solutions have represented a better perception of structural and thermal responses of CFC in fire.

A Study on the Strength Prediction of Crushed Sand Concrete by Ultra-sonic Velocity Method (초음파속도법에 의한 부순모래 콘크리트의 강도 추정에 관한 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Youm, Chi-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.71-78
    • /
    • 2007
  • Schmidt hammer and ultra-sonic method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various of equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site. In this study, a strength test was carried out destructive test by means of core sampling and traditional test. The experimental parameter were concrete age, curing condition, and strength level.

Nonlinear Finite Element Analysis on the Transmission of Column Loads through Slab-Column Connections

  • Lee, Joo-Ha;Yoon, Young-Soo;Sohn, Yu-Shin;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.466-469
    • /
    • 2006
  • This paper presents the structural characteristics of slab-column connections by using nonlinear finite element analysis. FEA considering material non-linearity was performed to investigate average column strain, failure mode, principal stress distribution, and steel yielding conditions for various slab-column members. In addition, to investigate alternative methods for improving the strength of interior column-slab joints, some specimens were provided with different reinforcing types of high-strength concrete puddling, high-strength column longitudinal steels, dowel bars, and high-strength concrete core. To make certain of the reliability of the analytical program, analysis results for concrete material model developed and two specimens with and without puddling were compared with experimental results. It was found that providing the alternative reinforcing methods in the slab-column joint results in a significant improvement in performance. This includes an increase in the axial compressive strength, greater loading stiffness, and ductility.

  • PDF

Evaluation of Fire-induced Damage for Shield Tunnel Linings Subjected to High Temperatures (고온에 노출된 쉴드터널 라이닝의 손상평가)

  • Lee, Chang Soo;Kim, Yong Hyok;Kim, Young Ook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • The aim of this study is to evaluate fire-induced damage for shield tunnel linings. Full-scale fire test was conducted to evaluate fire-induced damage. Residual compressive strength was measured on the core samples of shield tunnel lining subjected to high temperatures. Heating temperature was predicted by XRD and TG analysis. As a result, Strength degradation of concrete with temperatures can be evaluated by residual compressive strength of core samples. In addition, residual compressive strength can be estimated by previous studies if heating temperature is exactly predicted. It is possible that heating temperature is predicted by XRD and TG analysis at $450^{\circ}C$. For more accurate prediction of heating temperature it should be performed both instrumental analysis and analytical methods with temperatures ranging from $400{\sim}600^{\circ}C$.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 1: Experimental and analytical study

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong;Wang, Junyan
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.907-927
    • /
    • 2014
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. ULCC was adopted as the core material in the SCS sandwich composite beams to reduce the overall structural weight. Headed shear studs working in pairs with overlapped lengths were used to achieve composite action between the core material and steel face plates. Nine quasi-static tests on this type of SCS sandwich composite beams were carried out to evaluate their ultimate strength performances. Different parameters influencing the ultimate strength of the SCS sandwich composite beams were studied and discussed. Design equations were developed to predict the ultimate resistance of the cross section due to pure bending, pure shear and combined action between shear and moment. Effective stiffness of the sandwich composite beam section is also derived to predict the elastic deflection under service load. Finally, the design equations were validated by the test results.