• Title/Summary/Keyword: Compressive Strength Reduction factor

Search Result 42, Processing Time 0.028 seconds

Experimental Study on the Application of Concrete Admixture using the EAF Reduction Slag (전기로 환원 슬래그 미분말의 콘크리트용 혼화재 적용성에 관한 실험적 연구)

  • Choi, Jae-Seok;Jang, Pil-Sung;Jo, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6890-6897
    • /
    • 2014
  • EAF reduction slag has unstable properties of expansion and destruction. Therefore, it cannot be used as a construction material. The purpose of this study was to use EAF reduction slag as a concrete admixture. EAF reduction slag contains $11CaO{\cdot}7Al_2O_3{\cdot}CaF_2$ and ${\beta}-C_2S$ (calcium aluminate compounds). To confirm the properties of EAF reduction slag as a concrete admixture, the condensation, compressive strength and activity factor due to substitution rate of EAF reduction slag were measured. Originally, EAF reduction slag was cured rapidly because of its chemical composition ($11CaO{\cdot}7Al_2O_3{\cdot}CaF_2$). On the other hand, when 8% gypsum was added, its properties of condensation and compressive strength were similar to the plain specimen. When 6% gypsum was added, the quality of the KS F 2536 standards (quality standard number 3) were met in terms of activity factor. Overall, 8% gypsum addition is the most appropriate by considering the activity factor in the long-term compressive strength.

Static Compressive Strength of Thick Unidirectional Carbon Fiber - Epoxy Laminate (두꺼운 일방향 탄소섬유-에폭시 적층판의 정적 압축 강도 연구)

  • Lee, J.;Soutis, C.;Gong, Chang-Deok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.61-65
    • /
    • 2005
  • Existing test methods for thick-section specimens ( 4mm) have not provided precise compressive properties to date for the analysis and design of thick structure. A survey of the failure behaviour of such thick specimens revealed that the failure initiated at the top corner of the specimen and propagated down and across the width of the specimen as premature failure, not typically reported for thin compression specimens. In the current study, the premature failure was successfully avoided during compressive testing and the failure mode was quite similar regardless of increasing specimen thickness and specimen volume. Failure mode was similar regardless of increasing specimen thickness and specimen volume, i.e. brooming failure mode combined with longitudinal splitting, interlaminar cracking, fibre breakage and kinkband formation (fibre microbuckling). Nevertheless, average failure strengths of the specimens decreased with increasing specimen thicnkiness from 2mm to 8mm with the T800/924C system (36% strength reduction) and specimen volumes from scaling factor I to scaling factor 4 with the IM7/8552 system (46% strength reduction). It was revealed from the literature$^{11}$ that the thickness effect and scaling effect arc caused by manufacturing defects such as void content and fibre waviness.

  • PDF

A Design Guide for Composite Laminates by the Compressive after Impact Tests (충격후 잔류압축강도시험에 의한 복합재료 적층판의 설계)

  • 정태은;박경하;류정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2105-2113
    • /
    • 1995
  • The compressive tests under impact conditions were performed to establish a design guide for impact damage tolerance. The composition of layup was selected for the real cases of composite aircraft structure. The energy level of visible of visible damage threshold was determined as 7 Joules. It was found that the normalized bending stiffnesses in the direction of closely fixed boundary affected the area of damage. Graphite/epoxy used in the tests exhibited 60% reduction in compression strength at the energy level of visible damage threshold. Wet-conditioned specimens represented 9% reduction in residual compressive strength in comparison with room temperature ambient specimens. In this study, a design factor of 2.1 was proposed for the low velocity impact damage.

Temperature and humidity effects on behavior of grouts

  • Farzampour, Alireza
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.659-669
    • /
    • 2017
  • Grouts compared to other material sources, could be highly sensitive to cold weather conditions, especially when the compressive strength is the matter of concern. Grout as one the substantial residential building material used in retaining walls, rebar fixation, sidewalks is in need of deeper investigation, especially in extreme weather condition. In this article, compressive strength development of four different commercial grouts at three temperatures and two humidity rates are evaluated. This experiment is aimed to assess the grout strength development over time and overall compressive strength when the material is cast at low temperatures. Results represent that reducing the curing temperature about 15 degrees could result in 20% reduction in ultimate strength; however, decreasing the humidity percentage by 50% could lead to 10% reduction in ultimate strength. The maturity test results represented the effect of various temperatures and humidity rates on maturity of the grouts. Additionally, the freeze-thaw cycle's effect on the grouts is conducted to investigate the durability factor. The results show that the lower temperatures could be significantly influential on the behavior of grouts compared to lower humidity rates. It is indicated that the maturity test could not be valid and precise in harsh temperature conditions.

An Experimental Study on the Thermal Properties of High Strength Concrete in the Range of $40{\sim}100MPa$ at High Temperature (고온시 $40{\sim}100MPa$ 범위의 콘크리트 열적특성에 관한 실험적 연구)

  • Kim, Heung-Youl;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.425-428
    • /
    • 2006
  • In order to estimate the reduction of laodbearing capacity, followed by the attributive change of heat while high strength concrete structure is revealed on fire it is necessary to evaluate, it is necessary to evaluate the property of material under high temperature such as thermal conductivity, specific heat, compressive strength, modulus of rigidity and diminution figure. Therefore, this study is for the purpose of presenting evaluation data for the analysis of thermal behavior about the high strength concrete material under high temperature, through the experiment by manufacturing concrete(40, 50, 60, 80, 100 MPa) commonly used in the construction field. As a result of the study, in the case of physical attribute, it demonstrates a greater fluctuation of change than the one of 30 MPa concrete. In case of specific heat, the high strength concrete, shown the serious diminution between $500{\sim}600^{\circ}C$, presents the thermal change area corresponding to the change of high strength concrete. In compressive strength, regardless of intensity of concrete, all of them show the first intensity loss between normal temperature and $100^{\circ}C$, the dramatic loss beyond $400^{\circ}C$. The concrete weighing above 50 MPa shows a twice lower dramatic intensity loss than the one weighing $30{\sim}40MPa$. The concrete ranging from $60{\sim}80MPa$, shows the biggest diminution of modulus of elasticity under $400^{\circ}C$, which implies the structural unstability of temperature.

  • PDF

Fundamental Study on Evaluation method of Activity Factor of Fly Ash (플라이애시의 활성도지수 평가에 관한 기초적 연구)

  • Park, Sang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.59-65
    • /
    • 2008
  • In the evaluation method of KS on the activity factor of fly ash, same amount of cement should be replaced with fly ash. Therefore, contradictory effects on concrete strength exist, i. e. strength decease due to low content of cement and strength increase of strength due to filling-pore-function of fly ash. European Committee for Standardization (CEN) specifies the method 1 to 4. adding fly ash without reducing the content of cement, for the evaluation method on activity factor of fly ash. This study investigates the applicability of the method 2 of CEN to mix design of concrete. The followings are derived ; There is a key ratio of f)y ash mixing which enhances the incremental ratio of mixing water to improve fluidity of mortar. The incremental ratio of mixing water is maximized about 11% ratio of fly ash mixing. Compressive strength most slightly increases at that ratio of fly ash mixing. Activity factor of fly ash increases as water-cement ratio becomes low and contents of fly ash becomes high. Moreover, quality of fly ash and condition of mix design affect the applicable amount of fly ash and available range of water-cement ratio. However, this method has some problems for practical purpose because activity factors of fly ash for some cases are over 1.0. Further research should be conducted to develop more useful method of evaluating activity factor of fly ash.

A Study on the Estimation for the Guaranteed Strength and Construction Quality of the Combined High Flowing Concrete in Slurry Wall (지하연속벽용 병용계 고유동 콘크리트의 시공 품질 및 보증강도 평가에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.811-817
    • /
    • 2006
  • The primary purpose of this study is to estimate the guaranteed strength and construction quality of the combined high flowing concrete which is used in the slurry wall of underground LNG storage tank. The required compressive strength of this type of concrete become generally known as a non economical value because it is applied the high addition factor for variation coefficients and low reduction factor under water concrete. Therefore, after estimation of the construction quality and guaranteed strength in actual site work, this study is to propose a suitable equation to calculate the required compressive strength in order to improve its difference. Application results in actual site work are shown as followings. The optimum nix design proportion is selected that has water-cement ratio 51%, sand-aggregate ratio 48.8%, and replacement ratio 42.6% of lime stone powder by cement weight. Test results of slump flow as construction quality give average 616~634mm. 500mm flowing time and air content are satisfied with specifications in the rage of 6.3 seconds and 4.0% respectively. Results of strength test by standard curing mold show that average compressive strength is 49.9MPa, standard deviation and variation coefficients are low as 1.66MPa and 3.36%. Also test results by cored cylinder show that average compressive strength is 66.4MPa, standard deviation and variation coefficients are low as 3.64MPa and 5.48%. The guaranteed strength ratio between standard curing mold and cored cylinder show 1.23 and 1.32 in the flanks. It is shown that applied addition factor for variation coefficients and reduction factor under water concrete to calculate the required compressive strength is proved very conservative. Therefore, based on these results, it is proposed new equation having variation coefficients 7%, addition factor 1.13 and reduction factor 0.98 under water connote.

An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region (인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구)

  • 손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

A Study of Strength Reduction Factor Preparation for Circular Concrete Columns confined by Carbon Sheet Tube (카본시트튜브로 구속된 원형 콘크리트 기둥의 강도감소계수 제안에 관한 연구)

  • Lee, Kyoung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.106-112
    • /
    • 2016
  • In this study, circular concrete column specimens confined by carbon sheet tube with different winding angles and different number of carbon sheet plies(3T, 5T and 7T) were tested to propose design equations and a strength reduction factor. Specimens were designed by 300 mm diameter and 600 mm height with $90^{\circ}{\pm}0^{\circ}$, $90^{\circ}{\pm}30^{\circ}$, $90^{\circ}{\pm}45^{\circ}$, $90^{\circ}{\pm}60^{\circ}$, $90^{\circ}{\pm}75^{\circ}$ and $90^{\circ}{\pm}90^{\circ}$ carbon fiber angles. A 10,000 kN UTM was used for compressive strength test of specimens by displacement control method with 0.01 mm/sec velocity. Estimation equations of compressive strength and ultimate strain of circular concrete column specimens confined by carbon sheet tube using a regression analysis and a strength reduction factor to apply ultimate strength design method of concrete were proposed. The strength reduction factor(${\phi}$) of circular concrete columns confined by carbon sheet tube was estimated as 0.64 by the Monte Carlo Analysis Method. Manufacture and construction process have to be perfectly managed by construction managers because the structural capacities of carbon tubes were depends on construction abilities of manufacturing operators.

A Study on the Engineering Characteristics of CLSM (유동성 채움재의 공학적 특성 연구)

  • Jung, Min-Ji;Jeon, Byeong-Won;Kim, Byeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.19-28
    • /
    • 2024
  • This study explores the long-term decline in the uniaxial compressive strength of Controlled Low Strength Material (CLSM) by preparing a sample with a 1:1 mixing ratio of CLSM and water. Uniaxial compressive strength tests were conducted after 7 and 28 days of curing. The results revealed that the compressive strength at 28 days was reduced by a factor of 2.85 compared to that at 7 days. Additionally, when expansion was introduced under the same mixing conditions, there was a significant reduction in compressive strength. Point load strength tests based on 7 and 28 days of curing indicated a disparity of 29.27 to 58.76 and 48.19 to 95.13 times, respectively, between the point load strength and the uniaxial compressive strength at 7 days. The differences observed in the findings of this study compared to previous studies may be attributed to variations in the precision of the test method and the sample production process. Therefore, it is essential to establish clear testing methods to accurately evaluate CLSM.